sklearn鸢尾花测试案例

from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
from sklearn import metrics

iris=datasets.load_iris()

iris_x = iris.data
iris_y = iris.target

x_train,x_test,y_test = train_test_split(iris_x,iris_y,test_size = 0.3)

model_knn = KNeighborsClassifier()
model_knn.fit(x_train,y_train)

predict = model_knn.predict(x_test)

for i in range(len(predict)):
    print("第%d次测试结果:真实值:%s\t预测值:%s" % ((i+1),iris.target_names[predict[i]],iris.target_names[y_test[i]]))
print("准确值:%0.2f%%" % (metrics.precision_score(y_test,predict,average='macro')*100))

model_predict1 = model_knn.predict([[5.9,3.0,3.5,1.5]])
model_predict2 = model_knn.predict([[1.5,1.0,2.0,1.0]])

print("[5.9,3.0,3.5,1.5]预测结果为:",iris.target_names[model_predict1[0]])
print("[1.5,1.0,2.0,1.0]预测结果为:",iris.target_names[model_predict2[0]])


评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值