sklearn中测试及和训练集分离及选取

sklearn中的train_test_split:

from sklearn.model_selection import train_test_split

data_train,data_test,label_train,label_test = train_test_split(x,y,test_size=0.3,random_state=123)

test = KNeighborsClassifier(n_neighbors=4)
test.fit(data_train,label_train)
res1 = test.predict(data_test)
print(sum(res1 == label_test)/len(label_test))#准确率

#返回测试的准确率
from sklearn.metrics import accuracy_score
accuracy_score(res,test_label)
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值