目标检测框架
图来源:BV1AM4y187yR
本文的框架是在pytorch/tensorflow等框架上进一步的封装
1.Paddle:
百度,github,git里附带设备端的应用,方便部署,偏工业
2.MMDet:
MMdetection 已经复现了大部分主流和前沿模型,例如 Faster R-CNN 系列、Mask R-CNN 系列、YOLO 系列和 DETR 等,模型库非常丰富,分离出了很多独立的核心组件,方便复用
3.PyTorch Image Models (timm):
timm 整合了常用的models, layers, utilities, optimizers, schedulers, data-loaders / augmentations, and reference training / validation scripts,它的目的是将各种SOTA模型整合在一起,并具有再现ImageNet训练结果的能力,github
4.Detectron/Detectron2:
FaceBook,基于caffe2,Det2github
Detectron2在model zoos和速度上做了优化,涉及目标检测、关键点检测、实例分割、全景分割等模型
5.Tensorflow Object Detection:
Google,基于TensorFlow 1.x
6.Det3D:
通用 3D 目标检测框架 ,github