目标检测框架

目标检测框架

在这里插入图片描述

图来源:BV1AM4y187yR

本文的框架是在pytorch/tensorflow等框架上进一步的封装

1.Paddle:

百度,github,git里附带设备端的应用,方便部署,偏工业

2.MMDet:

商汤,基于pytorch,官方知乎github偏学术

MMdetection 已经复现了大部分主流和前沿模型,例如 Faster R-CNN 系列、Mask R-CNN 系列、YOLO 系列和 DETR 等,模型库非常丰富,分离出了很多独立的核心组件,方便复用

  • img

3.PyTorch Image Models (timm):

timm 整合了常用的models, layers, utilities, optimizers, schedulers, data-loaders / augmentations, and reference training / validation scripts,它的目的是将各种SOTA模型整合在一起,并具有再现ImageNet训练结果的能力,github

4.Detectron/Detectron2:

FaceBook,基于caffe2,Det2github

Detectron2在model zoos和速度上做了优化,涉及目标检测、关键点检测、实例分割、全景分割等模型

5.Tensorflow Object Detection:

Google,基于TensorFlow 1.x

6.Det3D:

通用 3D 目标检测框架 ,github

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值