凸优化系列——最优化问题

1. 凸优化问题介绍

        凸优化问题如下:

为什么要求不等式约束是线性函数呢?我们知道凸函数的下水平集是凸集。

为什么要求等式约束是线性的呢?线性函数表示一个超平面,他也是凸集

也就是说,对于凸优化问题,我们要求可行集是凸集

 

         对于下列问题,我们看似它不是凸优化问题,但是我们可以给它进行化简,将其化简为凸优化问题

凸函数的性质

  • 局部最优解即全局最优解 

证明如下 

  • 凸优化问题的最优性条件 

        证明如下,证明如下

几何解释就是,当梯度不为零时,我们找到了一个经过最优点的超平面支撑了整个凸集 

几种特殊凸问题的最优性条件

 

 

 

 

线性规划

 

 线性规划标准形式

 

         在线性规划中,如果存在最优解,则一定在顶点达到,因此,对于一个顶点x*,如果x*不是最优,我们可以从x*出发,找一个更优的点(单纯形法)

以下几类问题可转化为线性规划:
分式线性规划

 

 最小化绝对值函数

 最小化多面体函数:

 

 参考:最优化理论与方法-第四讲-凸优化问题_哔哩哔哩_bilibili

 

 

 

 

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

樱花的浪漫

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值