1.linespace
y=linespace(x1,x2):返回包含 x1 和 x2 之间的 100 个等间距点的行向量。
y=linespace(x1,x2,n):生成 n 个点。这些点的间距为 (x2-x1)/(n-1)。
2.lsqcurvefit
用最小二乘求解非线性拟合问题
x = lsqcurvefit(fun,x0,xdata,ydata): 从 x0 开始,求取合适的系数 x,使非线性函数 fun(x,xdata) 对数据 ydata 的拟合最佳(基于最小二乘指标)。ydata 必须与 fun 返回的向量(或矩阵)F 大小相同。
x =lsqcurvefit(fun,x0,xdata,ydata,lb,ub):对 x 中的设计变量定义一组下界和上界,使解始终在 lb ≤ x ≤ ub 范围内。您可以通过指定 lb(i) = ub(i) 来修复解分量 x(i)。