出栈序列的合法性

仅做个人笔记使用

题目:

给定一个最大容量为 M 的堆栈,将 N 个数字按 1, 2, 3, …, N 的顺序入栈,允许按任何顺序出栈,则哪些数字序列是不可能得到的?例如给定 M=5、N=7,则我们有可能得到{ 1, 2, 3, 4, 5, 6, 7 },但不可能得到{ 3, 2, 1, 7, 5, 6, 4 }。

输入格式:

输入第一行给出 3 个不超过 1000 的正整数:M(堆栈最大容量)、N(入栈元素个数)、K(待检查的出栈序列个数)。最后 K 行,每行给出 N 个数字的出栈序列。所有同行数字以空格间隔。

输出格式:

对每一行出栈序列,如果其的确是有可能得到的合法序列,就在一行中输出YES,否则输出NO。

输入样例:

5 7 5
1 2 3 4 5 6 7
3 2 1 7 5 6 4
7 6 5 4 3 2 1
5 6 4 3 7 2 1
1 7 6 5 4 3 2

输出样例:

YES
NO
NO
YES
NO

解析:

这道题题目挺简单,结果给我看了半天才理解题目的意思,本题的解法就是模拟入栈出栈的操作,假设输入的序列是合法的,将其与我们出栈时的元素一个个对比。就直接以判断5 6 7 4 3 2 1是否合法为例,模拟一下这个序列的合法性。

栈中元素                    出栈序列
11 21 2 31 2 3 41 2 3 4 51 2 3 4							5
1 2 3 4 6						5	
1 2 3 4 						5 6
1 2 3 4 7						5 6			
1 2 3 4 						5 6 7
1 2 3 							5 6 7 4
1 2 	 						5 6 7 4 3
1 		 						5 6 7 4 3 2
null							5 6 7 4 3 2 1...									...
null								1	2	3	4	5	6	7

在这里插入图片描述

代码:

定义堆栈及声明函数

#include<stdio.h>
#include<stdlib.h>

#define MAXS 1001
#define MAXN 50

typedef enum { False, True }Bool;
typedef int ElementType;
//堆栈定义
typedef int Position;
typedef struct SNode* PtrToSNode;
struct SNode {
	ElementType* Data;
	Position Top;
	int	Maxsize;
};
typedef PtrToSNode Stack;

Stack CreateStack(int Maxsize);
bool IsEmpty(Stack S);
bool IsFull(Stack S);
bool Push(Stack S,ElementType X);
bool Pop(Stack S);
void Clear(Stack S);

主程序

int main() {
	int N, M, K,i, j;
	int Str[MAXS];
	int num[MAXS];
	Stack S;

	scanf("%d %d %d\n", &M, &N, &K);
	S = CreateStack(M);
	for (i = 0; i < N; i++) {
		num[i] = i + 1;
	}
	for (i = 0; i < K; i++) {
		int y = 0;
		while (1) {//输入一个数组序列,以判断出现回车为结束标志
			scanf("%d", &Str[y++]);
			if (getchar() == '\n') {
				break;
			}
		}
		Clear(S);
		int cnt=0;
		j = 0;
		while(cnt<N)//一一比对str中的元素
		{
			if (S->Data[S->Top] == Str[cnt] ) {//如果栈顶元素和当前str的元素相等则弹出
				Pop(S);
				cnt++;
			}
			else {
				if (j > N && !IsEmpty(S)) break;//判断出现num中的数字都已入栈,并且栈中还有剩余元素,就是不合法的情况
				Push(S, num[j++]);
			}
		}
		if (IsEmpty(S))printf("YES\n");
		else printf("NO\n");
	}
	return 0;
}

相关函数:

Stack CreateStack(int Maxsize) {
	Stack S = (Stack)malloc(sizeof(struct SNode));
	S->Data = (ElementType*)malloc(Maxsize * sizeof(ElementType));
	S->Top = -1;
	S->Maxsize = Maxsize;
	return S;
}

bool IsEmpty(Stack S) {
	return (S->Top == -1);
}
bool IsFull(Stack S) {
	return (S->Top == (S->Maxsize - 1));
}
bool Push(Stack S, ElementType X) {
	if (IsFull(S)) return false;
	else {
		S->Data[++(S->Top)] = X;
		return true;
	}
}
bool Pop(Stack S) {
	if (IsEmpty(S)) return false;
	else {
		(S->Top)--;
		return true;
	}
}

void Clear(Stack S) {
	while(!IsEmpty(S))Pop(S);
}
  • 2
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

.别拖至春天.

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值