YOLOv8改进 - 注意力篇 - 引入EMA注意力机制

一、本文介绍

作为入门性篇章,这里介绍了EMA注意力在YOLOv8中的使用。包含EMA原理分析,EMA的代码、EMA的使用方法、以及添加以后的yaml文件及运行记录。

二、EMA原理分析

EMA官方论文地址:EMA文章

EMA代码:EMA代码

EMA注意力机制(高效的多尺度注意力):通过重塑部分通道到批次维度,并将通道维度分组为多个子特征,以保留每个通道的信息并减少计算开销。EMA模块通过编码全局信息来重新校准每个并行分支中的通道权重,并通过跨维度交互来捕获像素级别的关系。

相关代码:

EMA注意力的代码,如下:

class EMA_attention(nn.Module):
    def __init__(self, channels, c2=None, factor=32):
        super(EMA_attention, self).__init__()
        self.groups = factor
        assert channels // self.groups > 0
        self.softmax = nn.Softmax(-1)
        self.agp = nn.AdaptiveAv
### 改进 YOLOv8EMA注意力机制 为了在 YOLOv8 中优化 EMA(指数移动平均)和注意力机制以提高模型性能,可以采取以下措施: #### 1. 实现 EMA 注意力机制模块 EMA 注意力机制通过引入指数加权移动平均来增强特征图的关注度。这有助于更好地捕捉长期依赖关系并减少噪声干扰。 ```python import torch import torch.nn as nn class EMA_Attention(nn.Module): def __init__(self, channels, gamma=0.9): super(EMA_Attention, self).__init__() self.gamma = gamma self.channels = channels self.conv = nn.Conv2d(channels, channels, kernel_size=1) def forward(self, x): b, c, h, w = x.size() ema_weight = torch.zeros_like(x).to(x.device) for i in range(h): for j in range(w): if i == 0 and j == 0: ema_weight[:, :, i, j] = x[:, :, i, j] else: prev_value = ema_weight[:, :, max(i-1, 0), max(j-1, 0)] current_value = x[:, :, i, j] ema_weight[:, :, i, j] = (1 - self.gamma) * current_value + self.gamma * prev_value out = self.conv(ema_weight) return out ``` 此代码实现了 EMA 注意力机制的核心逻辑[^1]。 #### 2. 修改 `__all__` 列表 为了让新添加的 EMA 注意力机制能够被正确导入,在文件中找到 `__all__` 变量,并在其列表中加入 `"EMA_attention"`,确保前后有逗号分隔开其他项[^2]。 ```python __all__ = ( 'some_module', 'another_module', 'EMA_attention', # 添加这一行 ) ``` #### 3. 导入自定义模块 编辑 `ultralytics/nn/tasks.py` 文件,在适当位置添加如下语句以便于后续调用该功能模块。 ```python from ultralytics.nn.modules.EMA_attention import EMA_attention ``` 这些改动使得可以在训练过程中应用 EMA 注意力机制,从而进一步提升检测精度与鲁棒性。
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值