1 Hermite插值
Hermite插值的基本思想是通过一个多项式函数来逼近已知的数据点,同时满足这些点的函数值和导数值。这样即可以在给定的数据范围内获得更准确的拟合结果。与其他插值方法相比,Hermite插值具有更高的精度和光滑性。通过给定的数据点和其导数值,建立一个n次多项式函数(n是数据点的数量)。然后,使用已知的数据点和导数值,确定多项式函数的系数。最后,使用计算得到的多项式函数,可以在给定范围内估计其他位置上的函数值。
2 拉格朗日插值
拉格朗日插值法的基本思想就是使用多个取值点确定拉格朗日插值基,也就是所谓的插值系数,其插值基函数如下:
通过插值基来确定函数对应点的关系,去插值未知点的值。
3 牛顿插值法
牛顿插值法是拉格朗日插值法的改进方法,克服了拉格朗日插值法中存在的“增加一个节点时整个计算工作重新开始”的问题,且可以节省乘除法运算次数, 同时在Newton插值多项式中用到差分与差商等概念,又与数值计算的其他方面有密切的关系。其插值公式如下