leetcode 300.最长递增子序列

文章介绍了如何使用动态规划求解最长递增子序列问题,通过dp数组存储每个位置的最大递增子序列长度,利用递推公式dp[i]=max(dp[i],dp[j]+1)更新状态,并从小到大的顺序遍历数组,最终返回dp数组中的最大值作为结果。
摘要由CSDN通过智能技术生成
1. dp[ i ]  数组的定义:
                下标:第 i 个数字
                值: 表示包括 i 之前的最大的递增子序列
2. 递推公式:
        dp[i] = max(dp[i], dp[j] + 1)
也就是说,如果 num[ i ] > nums [ j ],就说明子序列的个数要 + 1, 所以    dp[j] + 1
在所有的比较中,dp [ i ] 取最大值,因为  i 在 j 循环的时候, i 是固定的 ,所以就会出现当,j 不
断移动的时候, dp [ i ] 会出现改变,所以要求的是最大值。
3. 初始化
        
        一开始都初始化成  1
4. 遍历顺序
        从小到大
        
        因为是根据前一个推导出后一个的
注意:
最后的返回值:是在dp数组中求出的最大值,而不是和之前一样是最后一个数值,因为这里不能保证最后一个数值就是包含在增长子序列中的
       
class Solution {
public:
    int lengthOfLIS(vector<int>& nums) {
        if(nums.size() == 1)
            return nums.size();
        
        vector<int> dp(nums.size(), 1);
        int res = 0;

        for(int i = 1; i < nums.size(); i++)
        {
            for(int j = 0; j < i ; j++)
            {
                if(nums[i] > nums[j])
                {                    
                     dp[i] = max(dp[i], dp[j] + 1);
                }   
            }
            res = max(res, dp[i]);
        }

        return res;
    }
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值