《数据结构初阶》 第一部分 时间复杂度和空间复杂度

大家好!我们从这篇开始讲解一下数据结构。数据结构的内容我也分为初阶和进阶,初阶用C语言实现,进阶用C++实现。
在这里插入图片描述

1. 什么是数据结构?

数据结构是计算机存储、组织数据的方式,指相互之间存在一种或多种特定关系的数据元素的集合。

2. 算法的复杂度

算法在编写成可执行程序后,运行时需要耗费时间资源和空间(内存)资源 。因此衡量一个算法的好坏,一般是从时间和空间两个维度来衡量的,即时间复杂度和空间复杂度。
时间复杂度主要衡量一个算法的运行快慢,而空间复杂度主要衡量一个算法运行所需要的额外空间。在计算机发展的早期,计算机的存储容量很小。所以对空间复杂度很是在乎。但是经过计算机行业的迅速发展,计算机的存储容量已经达到了很高的程度。所以我们如今已经不需要再特别关注一个算法的空间复杂度。

2.1 时间复杂度

2.1.1 时间复杂度的概念

时间复杂度的定义:在计算机科学中,算法的时间复杂度是一个函数,它定量描述了该算法的运行时间。一个算法执行所耗费的时间,从理论上说,是不能算出来的,只有你把你的程序放在机器上跑起来,才能知道。但是我们需要每个算法都上机测试吗?是可以都上机测试,但是这很麻烦,所以才有了时间复杂度这个分析方式。一个算法所花费的时间与其中语句的执行次数成正比例,算法中的基本操作的执行次数,为算法的时间复杂度。

即:找到某条基本语句与问题规模N之间的数学表达式,就是算出了该算法的时间复杂度。

// 请计算一下Func1中++count语句总共执行了多少次?
void Func1(int N) {
int count = 0;
for (int i = 0; i < N ; ++ i) {
 for (int j = 0; j < N ; ++ j)
 {
 ++count;
 }
}
 
for (int k = 0; k < 2 * N ; ++ k) {
 ++count; }
int M = 10;
while (M--) {
 ++count; }
 printf("%d\n", count);
}

在这里插入图片描述

2.1.2 大O的渐进表示法

大O符号:是用于描述函数渐进行为的数学符号。

推导大O阶方法:
1、用常数1取代运行时间中的所有加法常数。
2、在修改后的运行次数函数中,只保留最高阶项。
3、如果最高阶项存在且不是1,则去除与这个项相乘的常数。得到的结果就是大O阶。

使用大O的渐进表示法以后,Func1的时间复杂度为:O(N^2)
在这里插入图片描述
通过上面我们会发现大O的渐进表示法去掉了那些对结果影响不大的项,简洁明了的表示出了执行次数。

另外有些算法的时间复杂度存在最好、平均和最坏情况:
最坏情况:任意输入规模的最大运行次数(上界)
平均情况:任意输入规模的期望运行次数
最好情况:任意输入规模的最小运行次数(下界)
例如:在一个长度为N数组中搜索一个数据x
最好情况:1次找到
最坏情况:N次找到
平均情况:N/2次找到
在实际中一般情况关注的是算法的最坏运行情况,所以数组中搜索数据时间复杂度为O(N)

2.1.3 常见时间复杂度计算举例

实例1:

// 计算Func2的时间复杂度?
void Func2(int N) {
 int count = 0;
 for (int k = 0; k < 2 * N ; ++ k)
 {
 ++count;
 }
 int M = 10;
 while (M--)
 {
 ++count;
 }
 printf("%d\n", count);
}

这里的执行次数是2N+10,用大O的表示规则来看,只保留最高阶项,如果最高阶项存在且不是1,则去除与这个项目相乘的常数。就为O(N)。

实例2:

// 计算Func3的时间复杂度?
void Func3(int N, int M) {
 int count = 0;
 for (int k = 0; k < M; ++ k)
 {
 ++count;
 }
 for (int k = 0; k < N ; ++ k)
 {
 ++count;
 }
 printf("%d\n", count);
}

这里的时间复杂度为O(N+M),因为我们不知道M和N谁的影响大。
如果加了条件:M远大于N,那么我们就可以写成O(M)。
M和N差不多大,那么我们就可以写成O(M)或O(N)。

实例3:

// 计算Func4的时间复杂度?
void Func4(int N) {
 int count = 0;
 for (int k = 0; k < 100; ++ k)
 {
 ++count;
 }
 printf("%d\n", count);
}

这里的时间复杂度为O(1),因为用常数1取代运行时间中的所有加法常数。

实例4:

// 计算strchr的时间复杂度?
const char * strchr ( const char * str, int character );

这里strchr的意思是在字符串里寻找一个字符。
因为我们找一个字符,我们可能1次找到,可能很多次找到,所以这里我们要关注的是算法的最坏运行情况。所以时间复杂度为O(N)。

实例5:

// 计算BubbleSort的时间复杂度?
void BubbleSort(int* a, int n) {
 assert(a);
 for (size_t end = n; end > 0; --end)
 {
 int exchange = 0;
 for (size_t i = 1; i < end; ++i)
 {
 if (a[i-1] > a[i])
 {
 Swap(&a[i-1], &a[i]);
 exchange = 1;
 }
 }
 if (exchange == 0)
 break;
 }
}

这里我们思考一下最好的情况:就是已经是有序的了,我们不需要交换,那么时间复杂度为O(N-1)。
最坏的情况下:第一次,我们要比较N-1次,第二次,我们要比较N-2次,然后N-3次,N-4次…最后比较0次。所以总共次数是(N-1)*N/2,那么时间复杂度为O(N^2)。

实例6:

// 计算BinarySearch的时间复杂度?
int BinarySearch(int* a, int n, int x) {
 assert(a);
 int begin = 0;
 int end = n;
 while (begin < end)
 {
 int mid = begin + ((end-begin)>>1);
 if (a[mid] < x)
 begin = mid+1;
 else if (a[mid] > x)
 end = mid;
 else
 return mid;
 }
 return -1; }

二分查找我们来看一下最坏的情况下:
最坏的情况就是最后1个数字不是我们要找的数字,我们找不到。
然后我们每找一次就会排除一半的数字。
那么我们就可以得出N/2/2/2…/2=1,假设我们找了x次。
那么就可以得出N/2 ^ x=1,N=2^x。
在这里插入图片描述
在算法分析里,我们会把它简写成 O(logN)。只有以2为底的可以这样写,其它为底的不行。

实例7:

// 计算阶乘递归Fac1的时间复杂度?
long long Fac(size_t N) {
 if(0 == N)
 return 1;

 return Fac(N-1)*N; }

实例8:

// 计算阶乘递归Fac2的时间复杂度?
long long Fac2(size_t N)
{
	if (0 == N)
		return 1;
	for (size_t i = 0; i < N; ++i)
	{
		printf("%d", i);
	}
	printf("\n");

	return Fac(N - 1)*N;
}

递归算法时间复杂度计算:
1.每次函数调用是O(1),那么就看它的递归次数。
2.每次函数调用不是O(1),那么就看它的递归调用中次数的累加。

在实例7中:函数每次调用是O(1),时间复杂度为O(N)。
在实例8中:函数每次调用不是O(1),第一次是N,第二次是N-1…第N次是1。加在一起就是(N+1)*N/2。所以时间复杂度为O(N^2)。

实例9:

// 计算斐波那契递归Fib的时间复杂度?
long long Fib(size_t N) {
 if(N < 3)
 return 1;
 
 return Fib(N-1) + Fib(N-2);
}

这里我们递归下去可以画一个图,它会类似于一个三角形。
因为当N为2时,就会返回,所以:
在这里插入图片描述
因为在递归的时候,右边的递归会先结束,所以最后几行是不满的,但根据N的增大,这些我们可以忽略。
所以,结果可以为1+2+4+8…+2^(N-2),用大O的渐进表示法来表示结果为O(2 ^ N)。

2.2. 空间复杂度

2.2.1 空间复杂度的概念

空间复杂度也是一个数学表达式,是对一个算法在运行过程中临时占用存储空间大小的量度 。空间复杂度不是程序占用了多少bytes的空间,因为这个也没太大意义,所以空间复杂度算的是变量的个数。空间复杂度计算规则基本跟时间复杂度类似,也使用大O渐进表示法。

注意:函数运行时所需要的栈空间(存储参数、局部变量、一些寄存器信息等)在编译期间已经确定好了,因此空间复杂度主要通过函数在运行时候显式申请的额外空间来确定。

2.2.2 常见空间复杂度计算举例

实例1:

// 计算BubbleSort的空间复杂度
void BubbleSort(int* a, int n) {
	assert(a);
	for (size_t end = n; end > 0; --end) 
	{
		int exchange = 0;
		for (size_t i = 1; i < end; ++i)
		{
			if (a[i - 1] > a[i])
			{
				Swap(&a[i - 1], &a[i]);
				exchange = 1;
			}
		}
		if (exchange == 0)
			break;
	}
}

根据上面的红字,我们可以得出像函数的参数这些已经在编译期间确定好了,所以a,n不算,在这个函数创建空间的有end,exchange,i,这三个。
所以空间复杂度为O(1)。
在这里,我们还要注意一点的是:这里循环n次,exchange没有创建n个空间,而是只使用一个空间。

实例2:

// 计算Fibonacci的空间复杂度?
// 返回斐波那契数列的前n项
long long* Fibonacci(size_t n) {
 if(n==0)
 return NULL;
 
 long long * fibArray = (long long *)malloc((n+1) * sizeof(long long));
 fibArray[0] = 0;
 fibArray[1] = 1;
 for (int i = 2; i <= n ; ++i)
 {
 fibArray[i] = fibArray[i - 1] + fibArray [i - 2];
 }
 return fibArray; }

这里malloc开辟了n+1个空间,然后指针一个空间,i一个空间。
所以空间复杂度是O(N)。

实例3:

// 计算阶乘递归Fac的空间复杂度?
long long Fac1(size_t N) {
 if(N == 0)
 return 1;
 
 return Fac1(N-1)*N; }

递归调用了N次,开辟了N个栈帧,每个栈帧使用了常数个空间。
空间复杂度为O(N)

实例4:

//计算阶乘递归Fac2的空间复杂度?
long long Fac2(size_t N) {
 int flag[N];
	if (N == 0)
		return 1;

	return Fac2(N - 1) * N;
}

递归调用了N次,开辟了N个栈帧,第一个栈帧使用了N个空间,第二个栈帧使用了N-1个空间… …第N个栈帧使用了1个空间。
所以使用了1+2+3+… …+N个空间。
空间复杂度为O(N^2)

实例5:

// 计算斐波那契递归Fib的空间复杂度?
long long Fib(size_t N) {
 if(N < 3)
 return 1;
 
 return Fib(N-1) + Fib(N-2);
}

首先,我们先说一个知识点:
我们知道,我们每用一次函数,都会创建栈帧,当函数结束时,栈帧就会销毁。
因为栈是向下生长的,当再调用时,就会覆盖之前的空间。
看下面的代码:
在这里插入图片描述
我们可以看到它们两个的地址是一样的。
在这里插入图片描述
所以f1和f2使用的是同一块空间。
然后,我们再来看一下斐波那契:
在这里插入图片描述
有了上面的知识,我们就好理解:也就是说Fib(n-1)和Fib(n-2),它们使用的同一块空间,下面的也都如此。
当n=2时开始返回,所以开辟了n-1个空间,另外一层递归使用的是同一块空间。
所以,空间复杂度为O(N)

3. 常见复杂度对比

记住结论就行:
在这里插入图片描述
在这里插入图片描述

  • 49
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 52
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 52
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

学代码的咸鱼

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值