《数据结构》(1) - 时间复杂度与空间复杂度

本文详细介绍了时间复杂度和空间复杂度的概念,包括它们的定义和重要性。时间复杂度主要关注算法运行速度,常用大O表示法进行描述。文章通过多个经典题目解释了如何计算和分析时间复杂度,强调通常关注最坏情况的时间复杂度。空间复杂度则关注算法所需的额外存储空间,同样使用大O表示法。文中还给出了空间复杂度的分析实例。
摘要由CSDN通过智能技术生成


一.什么是时间复杂度和空间复杂度

1.算法效率

算法效率分析分为两种:第一种是时间效率,第二种是空间效率时间效率被称为时间复杂度,而空间效率被称作空间复杂度。 时间复杂度主要衡量的是一个算法的运行速度,而空间复杂度主要衡量一个算法所需要的额外空间,在计算机发展的早期,计算机的存储容量很小。所以对空间复杂度很是在乎。但是经过计算机行业的迅速发展,计算机的存储容量已经达到了很高的程度。所以我们如今已经不需要再特别关注一个算法的空间复杂度

2.时间复杂度

时间复杂度的定义:在计算机科学中,算法的时间复杂度是一个函数,它定量描述了该算法的运行时间。一个算法执行所耗费的时间,从理论上说,是不能算出来的,只有你把你的程序放在机器上跑起来,才能知道。但是我们需要每个算法都上机测试吗?是可以都上机测试,但是这很麻烦,所以才有了时间复杂度这个分析方式。一个算法所花费的时间与其中语句的执行次数成正比例,算法中的基本操作的执行次数,为算法的时间复杂度。

3.空间复杂度

空间复杂度是对一个算法在运行过程中临时占用存储空间大小的量度 。空间复杂度不是程序占用了多少bytes的空间,因为这个也没太大意义,所以空间复杂度算的是变量的个数。空间复杂度计算规则基本跟实践复杂度类似,也使用大O渐进表示法

提示:以下是本篇文章正文内容


二、时间复杂度

1.时间复杂度表示

因为在不同的硬件电路中,同一个程序编译花费的时间是不同的,因此,计算时间复杂度不能直接计算程序运行花费的时间,而算法中的基本操作的执行次数,就是算法的时间复杂度。时间复杂度用大写字母O加上()表示,即
O();

2.大O的渐进表示法

推导大O阶方法:

  1. 用常数1取代运行时间中的所有加法常数。
  2. 在修改后的运行次数函数中,只保留最高阶项。
  3. 如果最高阶项存在且不是1,则去除与这个项目相乘的常数。得到的结果就是大O阶。

请计算下列代码的时间复杂度:

//例1
void fun1(int n)
{
   
	int count = 0;
	for (int i = 0; i < n; i++)
	{
   
		for (int j = 0; j < n; j++)
		{
   
		++count;
		}
	}
	for (int i = 0; i < 2 * n; i++)
	{
   
		++count;
	}
	int M = 10;
	while (M--)
	{
   
		++count;
	}
	printf("%d", count);
}
分析可知,实际时间复杂度为n^2+2*n+10;
Func1 执行的基本操作次数 :
N = 10 F(N) = 130
N = 100 F(N) = 10210
N = 1000 F(N) = 1002010
实际中我们计算时间复杂度时,我们其实并不一定要计算精确的执行次数,而只需要大概执行次数,那么这里我们使用大O的渐进表示法。
因此这个程序的时间复杂度可以表示为O(n^2);

通过上面我们会发现大O的渐进表示法去掉了那些对结果影响不大的项,简洁明了的表示出了执行次数。
另外有些算法的时间复杂度存在最好、平均和最坏情况:
最坏情况:任意输入规模的最大运行次数(上界)
平均情况:任意输入规模的期望运行次数
最好情况:任意输入规模的最小运行次数(下界)
例如:在一个长度为N数组中搜索一个数据x
最好情况:1次找到
最坏情况:N次找到
平均情况:N/2次找到
在实际中一般情况关注的是算法的最坏运行情况,所以数组中搜索数据时间复杂度为O(N)

3.时间复杂度经典题目

题目1:

//例2
void fun2(int n)
{
   
	int count = 0;
	for (int i 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值