蓝桥杯第十五讲--复杂dp【习题】

前言

蓝桥杯官网:蓝桥杯大赛——全国大学生TMT行业赛事
✨本博客讲解 蓝桥杯C/C++ 备赛所涉及算法知识,此博客为第十五讲:复杂dp【习题】

本篇博客所包含习题有:
👊包子凑数
👊括号配对
👊旅游规划

复杂dp【例题】见博客:蓝桥杯第十五讲–复杂dp【例题】

如果你觉得本章节有些难度,建议先修如下两篇博客:
蓝桥杯第六讲–简单dp【例题】
蓝桥杯第六讲–简单dp【习题】

博客内容以题代讲,通过讲解题目的做法来帮助读者快速理解算法内容,需要注意:学习算法不能光过脑,更要实践,请读者务必自己敲写一遍本博客相关代码!!!


包子凑数

来源: 第八届蓝桥杯省赛C++A/B组,第八届蓝桥杯省赛JAVAA/B组

题目要求

题目描述:

小明几乎每天早晨都会在一家包子铺吃早餐。

他发现这家包子铺有 N N N 种蒸笼,其中第 i i i 种蒸笼恰好能放 A i A_i Ai 个包子。

每种蒸笼都有非常多笼,可以认为是无限笼。

每当有顾客想买 X X X 个包子,卖包子的大叔就会迅速选出若干笼包子来,使得这若干笼中恰好一共有 X X X 个包子。

比如一共有 3 3 3 种蒸笼,分别能放 3 3 3 4 4 4 5 5 5 个包子。

当顾客想买 11 11 11 个包子时,大叔就会选 2 2 2 3 3 3 个的再加 1 1 1 5 5 5 个的(也可能选出 1 1 1 3 3 3 个的再加 2 2 2 4 4 4 个的)。

当然有时包子大叔无论如何也凑不出顾客想买的数量。

比如一共有 3 3 3 种蒸笼,分别能放 4 4 4 5 5 5 6 6 6 个包子。

而顾客想买 7 7 7 个包子时,大叔就凑不出来了。

小明想知道一共有多少种数目是包子大叔凑不出来的。

输入格式:

第一行包含一个整数 N N N

接下来 N N N 行,每行包含一个整数 A i A_i Ai

输出格式:

输出一个整数代表答案。

如果凑不出的数目有无限多个,输出 I N F INF INF

数据范围:

1 ≤ N ≤ 100 , 1≤N≤100, 1N100,
1 ≤ A i ≤ 100 1≤A_i≤100 1Ai100

输入样例1:

2
4
5

输出样例1:

6

输入样例2:

2
4
6

输出样例2:

INF

样例解释:
对于样例 1 1 1,凑不出的数目包括: 1 1 1, 2 2 2, 3 3 3, 6 6 6, 7 7 7, 11 11 11
对于样例 2 2 2,所有奇数都凑不出来,所以有无限多个。

思路分析

1.判断给定的所有数最大公约数是否是 1 1 1,若不是则返回 I N F INF INF

2.若是,则有:
状态表示
f [ i ] [ j ] f[i][j] f[i][j] 表示:是否能从前i个物品中选,且能恰好能凑出体积是j

状态计算
f [ i ] [ j ] = f [ i − 1 ] [ j ] ∣ ∣ f [ i − 1 ] [ j − v ] ∣ ∣ f [ i − 1 ] [ j − 2 v ] . . . f[i][j] = f[i - 1][j] || f[i - 1][j - v] || f[i - 1][j - 2v]... f[i][j]=f[i1][j]f[i1][jv]f[i1][j2v]...

二维空间的写法(朴素写法)

#include <cstdio>
#include <algorithm>

using namespace std;

const int N = 10010;

int a[110];
bool f[110][N];

int gcd(int a, int b)
{
    return b ? gcd(b, a % b) : a;
}

int main()
{
    int n;
    scanf("%d", &n);
    int d = 0;
    for (int i = 1; i <= n; i ++ )
    {
        scanf("%d", &a[i]);
        d = gcd(d, a[i]);
    }

    if (d != 1) puts("INF");
    else
    {
        f[0][0] = true;
        for (int i = 1; i <= n; i ++ )
            for (int j = 0; j < N; j ++ )
            {
                f[i][j] = f[i - 1][j];
                if (j >= a[i]) f[i][j] |= f[i][j - a[i]];
            }

        int res = 0;
        for (int i = 0; i < N; i ++ )
            if (!f[n][i])
                res ++ ;

        printf("%d\n", res);
    }

    return 0;
}

优化完空间后的写法

#include <cstdio>
#include <algorithm>

using namespace std;

const int N = 10010;

int a[110];
bool f[N];

int gcd(int a, int b)
{
    return b ? gcd(b, a % b) : a;
}

int main()
{
    int n;
    scanf("%d", &n);
    int d = 0;
    for (int i = 1; i <= n; i ++ )
    {
        scanf("%d", &a[i]);
        d = gcd(d, a[i]);
    }

    if (d != 1) puts("INF");
    else
    {
        f[0] = true;
        for (int i = 1; i <= n; i ++ )
            for (int j = a[i]; j < N; j ++ )
                f[j] |= f[j - a[i]];

        int res = 0;
        for (int i = 0; i < N; i ++ )
            if (!f[i])
                res ++ ;

        printf("%d\n", res);
    }

    return 0;
}

括号配对

题目要求

题目描述:

H e c y Hecy Hecy 又接了个新任务: B E BE BE 处理。

B E BE BE 中有一类被称为 G B E GBE GBE

以下是 G B E GBE GBE 的定义:

  • 空表达式是 G B E GBE GBE
  • 如果表达式 A A A G B E GBE GBE,则 [ A ] [A] [A] ( A ) (A) (A) 都是 G B E GBE GBE
  • 如果 A A A B B B 都是 G B E GBE GBE,那么 A B AB AB G B E GBE GBE

下面给出一个 B E BE BE,求至少添加多少字符能使这个 B E BE BE 成为 G B E GBE GBE

注意: B E BE BE 是一个仅由()[]四种字符中的若干种构成的字符串。

输入格式:

输入仅一行,为字符串 B E BE BE

输出格式:

输出仅一个整数,表示增加的最少字符数。

数据范围:

对于所有输入字符串,其长度小于 100 100 100

输入样例:

[])

输出样例:

1

思路分析

在这里插入图片描述

代码

#include <cstring>
#include <iostream>
#include <algorithm>

using namespace std;

const int N = 110, INF = 100000000;

int n;
int f[N][N];

bool is_match(char l, char r)
{
    if (l == '(' && r == ')') return true;
    if (l == '[' && r == ']') return true;
    return false;
}

int main()
{
    string s;
    cin >> s;
    n = s.size();

    for (int len = 1; len <= n; len ++ )
        for (int i = 0; i + len - 1 < n; i ++ )
        {
            int j = i + len - 1;
            f[i][j] = INF;
            if (is_match(s[i], s[j])) f[i][j] = f[i + 1][j - 1];
            if (j >= 1) f[i][j] = min(f[i][j], min(f[i][j - 1], f[i + 1][j]) + 1);

            for (int k = i; k < j; k ++ )
                f[i][j] = min(f[i][j], f[i][k] + f[k + 1][j]);
        }

    cout << f[0][n - 1] << endl;

    return 0;
}

旅游规划

题目要求

题目描述:

W W W 市的交通规划出现了重大问题,市政府下定决心在全市各大交通路口安排疏导员来疏导密集的车流。

但由于人员不足, W W W 市市长决定只在最需要安排人员的路口安排人员。

具体来说, W W W 市的交通网络十分简单,由 n n n 个交叉路口和 n − 1 n−1 n1 条街道构成,交叉路口路口编号依次为 0 , 1 , … , n − 1 0,1,…,n−1 0,1,,n1

任意一条街道连接两个交叉路口,且任意两个交叉路口间都存在一条路径互相连接。

经过长期调查,结果显示,如果一个交叉路口位于 W W W 市交通网最长路径上,那么这个路口必定拥挤不堪。

所谓最长路径,定义为某条路径 p = ( v 1 , v 2 , … , v k ) p=(v_1,v_2,…,v_k) p=(v1,v2,,vk),路径经过的路口各不相同,且城市中不存在长度大于 k k k 的路径(因此最长路径可能不唯一)。

因此 W W W 市市长想知道哪些路口位于城市交通网的最长路径上。

输入格式:

第一行包含一个整数 n n n

之后 n − 1 n−1 n1 行每行两个整数 u , v u,v u,v,表示编号为 u u u v v v 的路口间存在着一条街道。

输出格式:

输出包括若干行,每行包括一个整数——某个位于最长路径上的路口编号。

为了确保解唯一,请将所有最长路径上的路口编号按编号顺序由小到大依次输出。

数据范围:

1 ≤ n ≤ 2 × 1 0 5 1≤n≤2×10^5 1n2×105

输入样例:

10
0 1
0 2
0 4
0 6
0 7
1 3
2 5
4 8
6 9

输出样例:

0
1
2
3
4
5
6
8
9

思路分析

1.先通过 树 形 d p 树形dp dp 求出每个点往下走的最大长度和次大长度,并且更新整棵树的最大路径 a n s ans ans

2.枚举每一个结点 i i i,设该点的最大长度是 d 1 [ i ] d_1[i] d1[i],次大长度是 d 2 [ i ] d_2[i] d2[i],若 d1[i] + d2[i] == ans,表示最大路径是从该点得出的,通过 d f s 2 dfs2 dfs2 找到最大长度的路径, d f s 3 dfs3 dfs3 找到次大长度的路径,并对路径的点进行标记

代码

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>

using namespace std;

const int N = 200010, M = N * 2;

int n;
int h[N], e[M], ne[M], idx;
int d1[N], d2[N], p1[N], up[N];
int maxd;

void add(int a, int b)
{
    e[idx] = b, ne[idx] = h[a], h[a] = idx ++ ;
}

void dfs_d(int u, int father)
{
    for (int i = h[u]; ~i; i = ne[i])
    {
        int j = e[i];
        if (j != father)
        {
            dfs_d(j, u);
            int distance = d1[j] + 1;
            if (distance > d1[u])
            {
                d2[u] = d1[u], d1[u] = distance;
                p1[u] = j;
            }
            else if (distance > d2[u]) d2[u] = distance;
        }
    }

    maxd = max(maxd, d1[u] + d2[u]);
}

void dfs_u(int u, int father)
{
    for (int i = h[u]; ~i; i = ne[i])
    {
        int j = e[i];
        if (j != father)
        {
            up[j] = up[u] + 1;
            if (p1[u] == j) up[j] = max(up[j], d2[u] + 1);
            else up[j] = max(up[j], d1[u] + 1);
            dfs_u(j, u);
        }
    }
}

int main()
{
    scanf("%d", &n);
    memset(h, -1, sizeof h);
    for (int i = 0; i < n - 1; i ++ )
    {
        int a, b;
        scanf("%d%d", &a, &b);
        add(a, b), add(b, a);
    }

    dfs_d(0, -1);
    dfs_u(0, -1);

    for (int i = 0; i < n; i ++ )
    {
        int d[3] = {d1[i], d2[i], up[i]};
        sort(d, d + 3);
        if (d[1] + d[2] == maxd) printf("%d\n", i);
    }

    return 0;
}

  • 14
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

辰chen

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值