背包问题求方案数

前言

AcWing算法提高课内容,本文讲解 动态规划

本篇包括以下题目:

⭐️ AcWing 11. 背包问题求方案数
⭐️ AcWing 1023. 买书
⭐️ AcWing 1021. 货币系统
⭐️ AcWing 532. 货币系统

写博客有哪里不完善的地方或者有哪里表达错误希望大家提出来,博主会立即改正!望大家海涵

本文需要先自修基础:背包问题

注:本文中的所有代码全部为优化后的代码,且不提供优化解释,解释请见:背包问题,其中有详细的解释

背包问题求方案数

题目要求

题目描述:

N N N 件物品和一个容量是 V V V 的背包。每件物品只能使用一次。

i i i 件物品的体积是 v i v_i vi,价值是 w i w_i wi

求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。

输出 最优选法的方案数。注意答案可能很大,请输出答案模 1 0 9 + 7 10^9+7 109+7 的结果。

输入格式:

第一行两个整数, N N N V V V,用空格隔开,分别表示物品数量和背包容积。

接下来有 N N N 行,每行两个整数 v i , w i v_i,w_i vi,wi,用空格隔开,分别表示第 i i i 件物品的体积和价值。

输出格式:

输出一个整数,表示 方案数 1 0 9 + 7 10^9+7 109+7 的结果。

数据范围:

0 < N , V ≤ 1000 0<N,V≤1000 0<N,V1000
0 < v i , w i ≤ 1000 0<v_i,w_i≤1000 0<vi,wi1000

输入样例:

4 5
1 2
2 4
3 4
4 6

输出样例:

2

思路分析

首先是一个裸的 01背包问题,即求在体积一定的情况下的最大价值,在 01背包的基础上我们需要求方案数, g [ i ] [ j ] g[i][j] g[i][j] 表示从前 i i i 个物品中选择,总体积不超过 j j j 的条件下,获得最大价值的情况下,最优选法的个数。那么有:g[0][0] = 1 f [ i ] [ j ] f[i][j] f[i][j] 可以由两种状态转移而来,分别为: f [ i − 1 ] [ j ] , f [ i − 1 ] [ j − v [ i ] ] + w [ i ] f[i - 1][j],f[i - 1][j - v[i]] + w[i] f[i1][j],f[i1][jv[i]]+w[i],对于每一个 f [ i ] [ j ] f[i][j] f[i][j] 我们都去对比查看与之相对应的是哪一个状态,然后加上那个状态的情况即可:

if (f[i][j] == f[i - 1][j]) 
   g[i][j] = (g[i][j] + g[i - 1][j]) % mol;
if (j >= v[i] && f[i][j] == f[i - 1][j - v[i]] + w[i]) 
   g[i][j] = (g[i][j] + g[i - 1][j - v[i]]) % mol; 

下面代码为一维优化后的代码

代码

#include <iostream>
#include <cstring>
#include <algorithm>

using namespace std;

const int N = 1010, mol = 1e9 + 7;

int f[N];
int g[N];

int main()
{
    int n, m;
    cin >> n >> m;
    
    g[0] = 1;
    for (int i = 1; i <= n; i ++ )
    {
        int v, w;
        cin >> v >> w;
        for (int j = m; j >= v; j -- )
        {
            int maxv = max(f[j], f[j - v] + w);
            int temp = 0;
            if (maxv == f[j]) temp = (temp + g[j]) % mol;
            if (maxv == f[j - v] + w) temp = (temp + g[j - v]) % mol;
            f[j] = maxv, g[j] = temp;
        }
    }
        
    int res = 0;
    for (int i = 0; i <= m; i ++ )
        if (f[i] == f[m])
            res = (res + g[i]) % mol;
            
    cout << res << endl;
    
    return 0;
}

买书

题目要求

题目描述:

小明手里有 n n n 元钱全部用来买书,书的价格为 10 10 10 元, 20 20 20 元, 50 50 50 元, 100 100 100 元。

问小明有多少种买书方案?(每种书可购买多本)

输入格式:

一个整数 n n n,代表总共钱数。

输出格式:

一个整数,代表选择方案种数。

数据范围:

0 ≤ n ≤ 1000 0≤n≤1000 0n1000

输入样例1:

20

输出样例1:

2

输入样例2:

15

输出样例2:

0

输入样例3:

0

输出样例3:

1

思路分析

f [ i ] f[i] f[i] 代表恰好用了 i i i 元钱的时候的方案数

代码

#include <iostream>
#include <cstring>
#include <algorithm>

using namespace std;

const int N = 1010;

int w[] = {10, 20, 50, 100};
int f[N];

int main()
{
    int n;
    cin >> n;
    
    f[0] = 1;
    for (int i = 0; i < 4; i ++ )
        for (int j = w[i]; j <= n; j ++ )
            f[j] += f[j - w[i]];
            
    cout << f[n] << endl;
    
    return 0;
}

思考

本题的 A C AC AC 代码是先枚举的四种金钱,后枚举的体积,那么反过来是否可以呢?

#include <iostream>
#include <cstring>
#include <algorithm>

using namespace std;

const int N = 1010;

int w[] = {10, 20, 50, 100};
int f[N];

int main()
{
    int n;
    cin >> n;
    
    f[0] = 1;
    for (int i = 1; i <= n; i ++ )
        for (int j = 0; j < 4; j ++ )
            if (i >= w[j])
                f[i] += f[i - w[j]];
            
    cout << f[n] << endl;
    
    return 0;
}

答案是不可以!这是因为如果是第二种代码的话,会有重复计算的结果,比如花 30 30 30 元买书的话,第二种情况下,先花钱买一本 10 10 10 元的书、再花钱买一本 20 20 20 元的书,和先花钱买一本 20 20 20 元的书、再花钱买一本 10 10 10 元的书,这显然应该是一种情况的,但是却计算了两次。

货币系统

题目要求

题目描述:

给你一个 n n n 种面值的货币系统,求组成面值为 m m m 的货币有多少种方案。

输入格式:

第一行,包含两个整数 n n n m m m

接下来 n n n 行,每行包含一个整数,表示一种货币的面值。

输出格式:

共一行,包含一个整数,表示方案数。

数据范围:

n ≤ 15 , m ≤ 3000 n≤15,m≤3000 n15,m3000

输入样例:

3 10
1
2
5

输出样例:

10

思路分析

f [ i ] f[i] f[i] 代表恰好用了 i i i 元钱的时候的方案数,注意本题会爆 i n t int int,需要开 l o n g long long l o n g long long

代码

#include <iostream>
#include <cstring>
#include <algorithm>

using namespace std;

typedef long long LL;

const int N = 3010;

LL f[N];

int main()
{
    int n, m;
    cin >> n >> m;
    
    f[0] = 1;
    for (int i = 1; i <= n; i ++ )
    {
        int w;
        cin >> w;        
        for (int j = w; j <= m; j ++ )
            f[j] += f[j - w];
    }
    
    cout << f[m] << endl;
    
    return 0;
}

货币系统

题目要求

题目描述:

在网友的国度中共有  n n n 种不同面额的货币,第  i i i 种货币的面额为  a [ i ] a[i] a[i],你可以假设每一种货币都有无穷多张。

为了方便,我们把货币种数为  n n n、面额数组为  a [ 1.. n ] a[1..n] a[1..n] 的货币系统记作  ( n , a ) (n,a) (n,a)

在一个完善的货币系统中,每一个非负整数的金额  x x x 都应该可以被表示出,即对每一个非负整数  x x x,都存在  n n n 个非负整数  t [ i ] t[i] t[i] 满足  a [ i ] × t [ i ] a[i]×t[i] a[i]×t[i] 的和为  x x x

然而,在网友的国度中,货币系统可能是不完善的,即可能存在金额  x x x 不能被该货币系统表示出。

例如在货币系统  n = 3 ,   a = [ 2 , 5 , 9 ] n=3, a=[2,5,9] n=3,a=[2,5,9] 中,金额  1 , 3 1,3 1,3 就无法被表示出来。

两个货币系统  ( n , a ) (n,a) (n,a) 和  ( m , b ) (m,b) (m,b) 是等价的,当且仅当对于任意非负整数  x x x,它要么均可以被两个货币系统表出,要么不能被其中任何一个表出。

现在网友们打算简化一下货币系统。

他们希望找到一个货币系统  ( m , b ) (m,b) (m,b),满足  ( m , b ) (m,b) (m,b) 与原来的货币系统  ( n , a ) (n,a) (n,a) 等价,且  m m m 尽可能的小。

他们希望你来协助完成这个艰巨的任务:找到最小的  m m m

输入格式:

输入文件的第一行包含一个整数  T T T,表示数据的组数。

接下来按照如下格式分别给出 T T T 组数据。

每组数据的第一行包含一个正整数  n n n

接下来一行包含  n n n 个由空格隔开的正整数  a [ i ] a[i] a[i]

输出格式:

输出文件共有 T T T 行,对于每组数据,输出一行一个正整数,表示所有与  ( n , a ) (n,a) (n,a) 等价的货币系统  ( m , b ) (m,b) (m,b) 中,最小的  m m m

数据范围:

1 ≤ n ≤ 100 , 1≤n≤100, 1n100,
1 ≤ a [ i ] ≤ 25000 , 1≤a[i]≤25000, 1a[i]25000,
1 ≤ T ≤ 20 1≤T≤20 1T20

输入样例:

2 
4 
3 19 10 6 
5 
11 29 13 19 17 

输出样例:

2
5

思路分析

贪心的思维:等价的货币系统必然是原货币系统删去一些值之后所剩下的,即在原本的货币系统中存在: a , b , c a,b,c a,b,c,使得 k 1 × a + k 2 × b = c ( k 1 , k 2 为 整 数 ) k_1\times a+k_2\times b=c(k_1,k_2为整数) k1×a+k2×b=ck1,k2,那么对于如此的货币系统,就可以删去 c c c,对于一个货币系统而言,显然是大的数字可以被小的数字枚举出来,故我们上述中的 k 1 , k 2 k_1,k_2 k1,k2 其实是 正 整 数 正整数 ,所以我们可以对已有的货币系统中的值进行一个从小到大排序,然后看由小的值是否可以枚举出大的值, f [ i ] f[i] f[i] 代表数字 i i i 出现的次数,那么对于一个从小到大进行枚举的货币系统而言,如果枚举到数字 i i i 的时候,其 f[i] == 0,这就意味着, i i i 是不可以被枚举出来的,即在新的货币系统中,必须有数字 i i i,否则就说明数字 i i i 可以被枚举出来,即新的货币系统中不需要数字 i i i,对于每一个数字 i i i,我们对货币系统中的数字进行一次筛查,把由数字 i i i 可以得到的数字全部筛除。

代码

#include <iostream>
#include <cstring>
#include <algorithm>

using namespace std;

const int N = 25010;

int w[N];
int f[N];

int main()
{
    int T;
    cin >> T;
    while (T -- )
    {
        int n;
        cin >> n;
        for (int i = 1; i <= n; i ++ ) cin >> w[i];
        
        sort(w + 1, w + n + 1);
        memset(f, 0, sizeof f);
        f[0] = 1;
        int m = w[n];
        
        int res = 0;
        for (int i = 1; i <= n; i ++ )
        {
            if (!f[w[i]]) res ++;
            for (int j = w[i]; j <= m; j ++ )
                f[j] += f[j - w[i]];
        }
        
        cout << res << endl;
    }
    
    return 0;
}
  • 14
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

辰chen

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值