Flink 流处理核心编程及算子操作

本文介绍了Flink流处理的核心编程,包括Environment运行环境的设置,详细讲解了Source数据来源,如文件、网络、Kafka等,并深入探讨了Flink的转换算子,如map、flatMap、filter、keyBy、shuffle、connect、union、reduce等的使用和区别,同时提到了process算子和重分区算子的特点。适合Flink初学者和大数据爱好者参考。
摘要由CSDN通过智能技术生成

Flink 流处理核心编程及算子操作

经过一段时间的学习,我对flink流处理的编程基础、核心API(转换算子)、开发流程等做出了如下整理。
在这里插入图片描述

Environment运行环境

从flink1.12.0起,flink在真正的意义上实现了流批一体。
flink的运行环境包括批处理环境和流处理环境
在开发过程中获取比较简单,只需要如下操作

// 批处理环境
ExecutionEnvironment benv = ExecutionEnvironment.getExecutionEnvironment();
// 流式数据处理环境
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

Source数据来源
Flink框架可以从不同的来源获取数据,将数据提交给框架进行处理, 我们将获取数据的来源称之为数据源(Source)。
比如集合、文件、网络端口、kafka、hdfs以及自定义等等。
这些比较简单

  1. 比如从文件中获取
readTextFile("input")
  1. 从网络端口获取
env.socketTextStream("localhost", 9999)
  1. 从kafka获取
KafkaSource<String> source = KafkaSource.<String>builder()
    .setBootstrapServers(brokers)
    .setTopics("input-topic")
    .setGroupId("my-group")
    .setStartingOffsets(OffsetsInitializer.earliest())
    .setValueOnlyDeserializer(new SimpleStringSchema())
    .build();

env.fromSource(source, WatermarkStrategy.noWatermarks(), "Kafka Source");
  1. 数据从dhfs目录下读取
<dependency>
    <groupId>org.apache.hadoop</groupId>
    <artifactId>hadoop-client</artifactId>
    <version>3.1.3</version>
</dependency>
  1. 自定义Source

需要实现SourceFunction相关接口,
重写run()和canel()方法,需要指定并行度的话可以实现ParallelSourceFunction这个接口

public static class 
AppMarketingDataSource
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值