Flink 流处理核心编程及算子操作
经过一段时间的学习,我对flink流处理的编程基础、核心API(转换算子)、开发流程等做出了如下整理。
Environment运行环境
从flink1.12.0起,flink在真正的意义上实现了流批一体。
flink的运行环境包括批处理环境和流处理环境
在开发过程中获取比较简单,只需要如下操作
// 批处理环境
ExecutionEnvironment benv = ExecutionEnvironment.getExecutionEnvironment();
// 流式数据处理环境
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
Source数据来源
Flink框架可以从不同的来源获取数据,将数据提交给框架进行处理, 我们将获取数据的来源称之为数据源(Source)。
比如集合、文件、网络端口、kafka、hdfs以及自定义等等。
这些比较简单
- 比如从文件中获取
readTextFile("input")
- 从网络端口获取
env.socketTextStream("localhost", 9999)
- 从kafka获取
KafkaSource<String> source = KafkaSource.<String>builder()
.setBootstrapServers(brokers)
.setTopics("input-topic")
.setGroupId("my-group")
.setStartingOffsets(OffsetsInitializer.earliest())
.setValueOnlyDeserializer(new SimpleStringSchema())
.build();
env.fromSource(source, WatermarkStrategy.noWatermarks(), "Kafka Source");
- 数据从dhfs目录下读取
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-client</artifactId>
<version>3.1.3</version>
</dependency>
- 自定义Source
需要实现SourceFunction相关接口,
重写run()和canel()方法,需要指定并行度的话可以实现ParallelSourceFunction这个接口
public static class
AppMarketingDataSource