求每隔不超过k个数就必须删去一个数,使得删去数的和最小。
我们设 f[i] 为前i个数中,在一定删除第i个数的情况下,满足上述条件的答案。
那么我们可以得到 f[i] = x[i] + min(f[i - k]…f[i - 1]);
但是按照题目数据范围这样做会超时,所以我们引入一个新得数据结构叫单调队列,对min这个部分进行优化:我们建立一个队列,保证队列是单调递减的,这样我们就可以保证当 f[j] >= f[i] (j >= i)时 f[j]无法入队。
同时我们保证单调队列长度不超过k,那么我们就可以保证题目所说的每不超过k个数删除一个的条件。这样我们每次取队首更新f[i]即可。
在提交的时候发现题目关闭了 这个代码只过了样例
前k个 f[i]=x[i]; 同时维护单调队列
#include<bits/stdc++.h>
using namespace std;
map<int,int>mp;
const int maxn=2e6+100;
//bool number[maxn + 5];
int n,m,k,sum,cnt;
#define PI 3.141592653
typedef long long ll;
//ll a[1000009],b[1000009];
const int mod=998244353;
const int N=1e6;
typedef pair<int,int> PII;
ll f[1000000];
ll arr[1000000];
int pos[N], que[N];//, MAX[N], MIN[N];
int head = 1, tail = 0;
int main(){
cin>>n>>k;
for(int i=1;i<=n;i++){
cin>>arr[i];
sum+=arr[i];
}
if(k>=n){
cout<<sum;
return 0;
}
for(int i=1;i<=k;i++){
f[i]=arr[i];
while(head <= tail && que[tail] > arr[i]) --tail;//队尾元素 > 当前元素, tail前移至 队尾元素 <= 当前元素//插入
que[++tail] = arr[i];
pos[tail] = i;
// if(i<k) f[i]=arr[i];
// else
if(i < k) continue;//窗口大小未至 k
while(pos[head] < i - k + 1) ++head;//删队头, 因为在滑动过程中, 队头元素会被舍弃
//MIN[i - k + 1] = que[head];
}
for(int i = k+1; i <= n; ++i)
{
// cin>>arr[i];
// if(i>=k)
f[i]=arr[i]+que[tail];
while(head <= tail && que[tail] > f[i]) --tail;//队尾元素 > 当前元素, tail前移至 队尾元素 <= 当前元素//插入
que[++tail] = f[i];
pos[tail] = i;
//if(i<k) f[i]=arr[i];
// else
// if(i < k) continue;//窗口大小未至 k
while(pos[head] < i - k + 1) ++head;//删队头, 因为在滑动过程中, 队头元素会被舍弃
// MIN[i - k + 1] = que[head];
}
ll mina=1000000000;
for(int i=n-k+1;i<=n;i++){
mina=min(mina,f[i]);
}
cout<<sum-mina;
return 0;
}