1.已知n,e,c,npp求解明文
npp = (p+2) * (q+2)
解密过程:
e , p1=p , q1=q , n1=p * q , φ(n1)=(p1-1) * (q1-1) , p2=(p+2) , q2=(q+2) , n2=(p+2) * (q+2) , φ(n2)=(p2-1) * (q2-1)
首先根据e和φ(n2)求出d2,对c解密求得明文m2,再根据e和φ(n1)求出d1,对m2解密求出明文m。
如何求p,q:
可以构造一个方程: x2 - (p+q)x+pq =0,此方程中的(p+q)和(p*q)都可以通过n和npp求出,并且p,q是该方程的两个根。
2.已知p,q,dp,dq,c求明文
首先有如下公式:
dp ≡ d mod (p-1) ,dq ≡ d mod (q-1) ,m ≡ cd (mod n) ,n = p * q
至此,求出了m1,m2,p^(-1),从而可以求出明文m = ((m1 + ((m2 - m1) * p-1 mod q)) * p) mod n。
3.已知e,n,dp/(dq),c求明文
首先有如下公式:
dp ≡ d mod (p-1) ,e * d ≡ 1 mod φ(n) ,n = p * q ,φ(n) = (p-1) * (q-1)