机器学习-Logistic回归


提示:这里可以添加本文要记录的大概内容:

例如:随着人工智能的不断发展,机器学习这门技术也越来越重要,很多人都开启了学习机器学习,本文就介绍了机器学习的基础内容。


提示:以下是本篇文章正文内容,下面案例可供参考

一、Logistic回归函数

Logistic回归(logistic regression)是统计学习中的经典分类方法,属于对数线性模型,所以也被称为对数几率回归。这里要注意,虽然带有回归的字眼,但是该模型是一种分类算法,Logistic回归是一种线性分类器,针对的是线性可分问题。利用logistic回归进行分类的主要思想是:根据现有的数据对分类边界线建立回归公式,以此进行分类。

二、sigmoid函数

我们处理二分类问题,由于分成两类,我们便让其中一类标签为0,另一类为1。我们需要一个函数,对于输入的每一组数据x^{(i)},都能映射成0~1之间的数。这个函数就是sigmoid函数,形式为
在这里插入图片描述

当x为0时,sigmoid函数值为0.5。随着x的增大,对应的sigmoid函数的值将逼近于1;而随着x的减小,sigmoid函数的值将逼近于0。

在这里插入图片描述

三、最大梯度上升

梯度上升法基于的思想是:要找到某函数的最大值,最好的方法是沿着该函数的梯度方向探寻。如果梯度记为∇ \nabla∇,则函数f(x,y)的梯度由下式表示:
在这里插入图片描述
这个梯度意味着要沿x的方向移动
在这里插入图片描述
沿y的方向移动:
在这里插入图片描述
其中,函数f(x,y)必须要在待计算的点上有定义并且可微。

梯度算子总是指向函数值增长最快的方向。这里所说的是移动方向,而未提到移动量的大小。该量值称为步长,记作α \alphaα。用向量来表示的话,梯度上升算法的迭代公式如下:
在这里插入图片描述

四、Logistic回归分类实例

1.收集数据

部分数据如下:
在这里插入图片描述

def loadDataSet():#函数功能为打开文本文件并逐行读取
    dataMat = [];labelMat = []
    fr = open('D:\TestSet.txt')
    for line in fr.readlines():
        lineArr = line.strip().split()
        # 为了方便计算,我们将 X0 的值设为 1.0 ,也就是在每一行的开头添加一个 1.0 作为 X0
        dataMat.append([1.0, float(lineArr[0]), float(lineArr[1])])
        labelMat.append(int(lineArr[2]))
    return dataMat, labelMat

2.sigmoid函数

def sigmoid(inX):
    return 1.0/(1+exp(-inX))
#输入数据特征与数据的类别标签
def gradAscent(dataMatIn, classLabels):
    #转换为numpy型
    dataMatrix = mat(dataMatIn) 
    # transpose() 行列转置函数
    labelMat = mat(classLabels).transpose()
    m,n = shape(dataMatrix)
    alpha = 0.001 #步长
    maxCycles = 500 #迭代次数
   
    #初始化权值向量,每个维度均为1.0
    weights = ones((n,1))
    for k in range(maxCycles):
        h = sigmoid(dataMatrix * weights)
        error = (labelMat - h)
        weights = weights + alpha * dataMatrix.transpose() * error
    return weights

3.画出数据集

def plotBestFit(weights):
    import matplotlib.pyplot as plt
    dataMat, labelMat = loadDataSet()
    dataArr = array(dataMat)
    # n->数据量,样本数
    n = shape(dataArr)[0]
    #xcord1,ycord1代表正例特征
    #xcord2,ycord2代表负例特征
    xcord1 = []; ycord1 = []
    xcord2 = []; ycord2 = []
    #循环筛选出正负集
    for i in range(n):
        if int(labelMat[i]) == 1:
            xcord1.append(dataArr[i,1]); ycord1.append(dataArr[i, 2])
        else:
            xcord2.append(dataArr[i,1]); ycord2.append(dataArr[i, 2])
    fig = plt.figure()
    ax = fig.add_subplot(111)
    ax.scatter(xcord1, ycord1, s = 30, c = 'red', marker = 's')
    ax.scatter(xcord2, ycord2, s = 30, c = 'green')
    plt.xlabel('X1')
    plt.ylabel('X2')
    plt.title('DataSet')
    plt.show()

4.画出最佳拟合曲线

import math
from numpy import *

def plotBestFit(weights):
    import matplotlib.pyplot as plt
    dataMat,labelMat=loadDataSet()
    dataArr=array(dataMat)
    n=shape(dataArr)[0]
    #xcord1,ycord1代表正例特征
    #xcord2,ycord2代表负例特征
    xcord1=[];ycord1=[]
    xcord2=[];ycord2=[]
#循环筛选出正负集
    for i in range(n):
        if int(labelMat[i])==1:
            xcord1.append(dataArr[i,1]);ycord1.append(dataArr[i,2])
        else:
            xcord2.append(dataArr[i,1]);ycord2.append(dataArr[i,2])
    fig=plt.figure()
    ax=fig.add_subplot(111)
    ax.scatter(xcord1,ycord1,s=30,c='red',marker='s')
    ax.scatter(xcord2,ycord2,s=30,c='green')
#设定边界直线x和y的值
    x=arange(-3.0,3.0,0.1)
    y=(-weights[0]-weights[1]*x)/weights[2]
    ax.plot(x,y)
    plt.xlabel('X1');plt.ylabel('X2');
    plt.show()

dataArr,labelMat=loadDataSet()
weights=gradAscent(dataArr,labelMat)
plotBestFit(weights.getA())

5.运行结果

在这里插入图片描述

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值