在pytorch官网我们在torchvision中可以看到datasets含有很多数据集,用来生成图片,视频数据集,和一些流行的模型类和预训练模型.
参数:
root (string) – 存在 mnist/processed/training.pt 和 mnist/processed/test.pt 的数据集根目录。
train (bool, optional) – 如果为True,从 training.pt 创建数据,否则从 test.pt 创建数据。
download (bool, optional) – 如果为true,则从 Internet 下载数据集并将其放在根目录中。 如果已下载数据集,则不会再次下载。
transform (callable, optional) – 一个函数/转换,它接收PIL图像并返回转换后的版本。 例如,transforms.RandomCrop
target_transform (callable, optional) – 接收目标并对其进行转换的函数/转换。
我们以CIFAR10这个数据集1为例:
提取10个图片到tensorboard
import torchvision.datasets
from torchvision import transforms
from torch.utils.tensorboard import SummaryWriter
img_tensor=transforms.ToTensor()
train_set=torchvision.datasets.CIFAR10("/.dataset2",train=True,transform=img_tensor,download=True)
test_set=torchvision.datasets.CIFAR10("/.dataset2",train=False,transform=img_tensor,download=True)
writer=SummaryWriter("logs")
for i in range(10):
img,target=train_set[i]
writer.add_image("Training",img,i)
writer.close()
等