torchvision中的数据集使用

在pytorch官网我们在torchvision中可以看到datasets含有很多数据集,用来生成图片,视频数据集,和一些流行的模型类和预训练模型.
在这里插入图片描述

参数:

root (string) –  存在 mnist/processed/training.pt 和 mnist/processed/test.pt 的数据集根目录。
train (bool, optional) – 如果为True,从 training.pt 创建数据,否则从 test.pt 创建数据。
download (bool, optional) – 如果为true,则从 Internet 下载数据集并将其放在根目录中。 如果已下载数据集,则不会再次下载。
transform (callable, optional) –  一个函数/转换,它接收PIL图像并返回转换后的版本。 例如,transforms.RandomCrop
target_transform (callable, optional) – 接收目标并对其进行转换的函数/转换。

我们以CIFAR10这个数据集1为例:
提取10个图片到tensorboard

import torchvision.datasets
from torchvision import transforms
from torch.utils.tensorboard import SummaryWriter
img_tensor=transforms.ToTensor()
train_set=torchvision.datasets.CIFAR10("/.dataset2",train=True,transform=img_tensor,download=True)
test_set=torchvision.datasets.CIFAR10("/.dataset2",train=False,transform=img_tensor,download=True)
writer=SummaryWriter("logs")
for i in range(10):
    img,target=train_set[i]
    writer.add_image("Training",img,i)
writer.close()

在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值