【03】torchvision数据集

1. torchvision数据集介绍

① torchvision中有很多数据集,当我们写代码时指定相应的数据集指定一些参数,它就可以自行下载。

② CIFAR-10数据集包含60000张32×32的彩色图片,一共10个类别,其中50000张训练图片,10000张测试图片。

2. torchvision数据集使用

① 在 Anaconda 终端里面,激活py3.6.3环境,再跳转到该项目的路径下。

② 运行python。导入torchvision包,输入train_set = torchvision.datasets.CIFAR10(root="./dataset",train=True,download=True)命令,即下载数据集到到该文件夹下。

3. 查看CIFAR10数据集内容

import torchvision
train_set = torchvision.datasets.CIFAR10(root="./dataset",train=True,download=True) # root为存放数据集的相对路线
test_set = torchvision.datasets.CIFAR10(root="./dataset",train=False,download=True) # train=True是训练集,train=False是测试集  

print(test_set[0])       # 输出的3是target 
print(test_set.classes)  # 测试数据集中有多少种

img, target = test_set[0] # 分别获得图片、target
print(img)
print(target)
print(test_set.classes[target]) # 3号target对应的种类

img.show()

----------------------------------------------------------
结果:
(<PIL.Image.Image image mode=RGB size=32x32 at 0x1A4275AAF28>, 3)
['airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck']

<PIL.Image.Image image mode=RGB size=32x32 at 0x1A4275AAA58>
3
cat

 4. Tensorboard查看内容

import torchvision
from torch.utils.tensorboard import SummaryWriter

dataset_transform = torchvision.transforms.Compose([torchvision.transforms.ToTensor()])     
train_set = torchvision.datasets.CIFAR10(root="./dataset",train=True,transform=dataset_transform,download=True) # 将ToTensor应用到数据集中的每一张图片,每一张图片转为Tensor数据类型     
test_set = torchvision.datasets.CIFAR10(root="./dataset",train=False,transform=dataset_transform,download=True)   

writer = SummaryWriter("logs") 
for i in range(10):
    img, target = test_set[i]
    writer.add_image("test_set",img,i)
    print(img.size())

writer.close() # 一定要把读写关闭,否则显示不出来图片

---------------------------------------------------------
结果:
torch.Size([3, 32, 32])
torch.Size([3, 32, 32])
torch.Size([3, 32, 32])
torch.Size([3, 32, 32])
torch.Size([3, 32, 32])
torch.Size([3, 32, 32])
torch.Size([3, 32, 32])
torch.Size([3, 32, 32])
torch.Size([3, 32, 32])
torch.Size([3, 32, 32])

① 在 Anaconda 终端里面,激活py3.6.3环境,再输入 tensorboard --logdir=C:\Users\wangy\Desktop\03CV\logs 命令,将网址赋值浏览器的网址栏,回车,即可查看tensorboard显示日志情况。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值