Torchvision是PyTorch的一个库,用于计算机视觉任务。它提供了许多常用的数据集,可以用于训练和测试计算机视觉模型。以下是一些Torchvision中常见的数据集:
1. MNIST:手写数字数据集,包含了60000个训练样本和10000个测试样本,每个样本是一个28x28像素的灰度图像。
2. CIFAR-10和CIFAR-100:CIFAR-10数据集包含了60000个32x32彩色图像,分为10个类别,每个类别有6000个图像。CIFAR-100数据集也是32x32彩色图像,但包含了100个类别,每个类别有600个图像。
3. ImageNet:ImageNet是一个大规模的图像数据集,包含了超过100万个图像,分为1000个类别。Torchvision提供了ImageNet数据集的子集,可以用于快速的模型原型设计和调试。
4. COCO:COCO数据集是一个通用的目标检测、分割和关键点检测数据集,包含了超过200,000个标注的图像,涵盖了80个不同的类别。
5. VOC:VOC数据集是一个经典的目标检测和分割数据集,包含了PASCAL VOC挑战赛中使用的图像和标注信息。
这些数据集在Torchvision中都有相应的类和函数可以方便地加载和处理。可以使用这些数据集来训练和评估计算机视觉模型。
Torchvision中的数据集的下载
在Torchvision中,大多数常见的数据集都可以通过内置的函数进行下载。这些函数会自动从官方网站或其他可靠的来源下载数据集,并将其保存到指定的目录中。
1.MNIST数据集:
import torchvision
# 下载MNIST数据集
train_dataset = torchvision.datasets.MNIST(root='./data', train=True, download=True)
test_dataset = torchvision.datasets.MNIST(root='./data', train=False, download=True)
root为下载目录,train=True代表为训练集,download代表下载。
2.CIFAR-10数据集:
import torchvision
# 下载CIFAR-10数据集
train_dataset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True)
test_dataset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True)
3.ImageNet数据集的子集:
import torchvision
# 下载ImageNet数据集的子集(例如,使用1000个类别)
train_dataset = torchvision.datasets.ImageNet(root='./data', split='train', download=True)
val_dataset = torchvision.datasets.ImageNet(root='./data', split='val', download=True)
4.COCO数据集:
import torchvision
# 下载COCO数据集
train_dataset = torchvision.datasets.CocoDetection(root='./data', image_set='train', download=True)
val_dataset = torchvision.datasets.CocoDetection(root='./data', image_set='val', download=True)
示例代码将数据集下载到指定的目录(例如'./data'),并返回一个数据集对象,可以用于后续的数据加载和处理。请确保在运行代码之前安装了Torchvision库,并确保有足够的存储空间来保存下载的数据集。