给你一个二叉树的根节点 root
,判断其是否是一个有效的二叉搜索树。
有效 二叉搜索树定义如下:
- 节点的左
子树
只包含 小于 当前节点的数。 - 节点的右子树只包含 大于 当前节点的数。
- 所有左子树和右子树自身必须也是二叉搜索树。
示例 1:
输入:root = [2,1,3] 输出:true
示例 2:
输入:root = [5,1,4,null,null,3,6] 输出:false 解释:根节点的值是 5 ,但是右子节点的值是 4 。
提示:
- 树中节点数目范围在
[1, 104]
内 -231 <= Node.val <= 231 - 1
正确解法:根据搜索树的中序遍历是递增序列的特点,用pre记录前一个访问的节点,只要保证每一个当前节点都大于pre节点的值,就说明是二叉搜索树:
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
TreeNode* pre=nullptr;
void check(TreeNode* root, bool& t){
if(root==NULL ||t==false) return ;
check(root->left,t);
if(pre==NULL ||pre->val<root->val ) ;
else if(pre->val>=root->val){
t=false;
return;
}
pre=root;
check(root->right,t);
}
bool isValidBST(TreeNode* root) {
bool t=true;
check(root,t);
return t;
}
};
错误解法:错因:只考虑到当前根节点与其左右节点的关系,忽略子孙节点的关系:
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
//易错:左子树值等于根值也不是
//
void check(TreeNode* root,bool &t){
if(root==NULL) return;
check(root->left,t);
if(root->left==NULL || root->left->val<root->val);
else if(root->val<=root->left->val) {
t=false;
}
check(root->right,t);
if(root->right==NULL ||root->val<root->right->val);
else if(root->val>=root->right->val) {
t=false;
}
}
bool isValidBST(TreeNode* root) {
bool t=true;
check(root,t);
return t;
}
};