零样本学习

零样本学习(Zero-shot learning)是迁移学习中的一种特殊情况,其目的是通过可见类训练集和一组辅助知识(高维特征空间的语义描述)实现不可见样本(图像)的识别。

前言

近期,在了解迁移学习的过程中,认识到这个概念。零样本学习是迁移学习的一个特例。为什么这么说呢?我们知道,迁移学习是一种与模型无关(独立)的学习方式。它模仿人脑学习方式,不需要太多的标注数据,通过将相关任务的训练数据中的可泛化知识(与领域无关的特征)迁移到目标任务上,使得新模型不用从零开始学习。简言之,找到共性的底层的通用的属性,拿来重复利用。零样本学习就是更特殊了一点,不仅找到共性通用的属性,还将这些属性加以组合,组合出新的东西,也就是说通过零样本学习可以得到新标签。因此,我想调研一下零样本学习是否可以用于处理地震数据。以下摘录自零样本学习--一文先了解 - 知乎 (zhihu.com)

在冀中和 WEI WANG的文章中,零样本学习均被视为迁移学习的一个特例。零样本学习中,源特征空间是训练样本的特征空间和目标特征空间是测试样本的特征空间,这两者是相同的。但是源标注空间和目标标注空间分别是可见类别和未见类别,两者是不同的。因此零样本学习属于异质迁移学习(heterogeneous transfer learning)。

常见方法

1. 类间属性迁移:与以往实现数据的特征空间到数据标签之间的映射不同,这里利用数据特征预测的却是样本的某一属性

由此注意到一个缺点:在测试阶段假设只有未见类样例出现,即只可能输入斑马,不会输入马/老虎/熊猫。 这在实际应用中这种假设是不现实的,往往已见类的样例是现实世界中最为常见的样例。

 2. 使用词向量:对于地震反演来说,输入是一个看地震数据,输出是一个速度模型。那么,把地震数据转化成特征空间Feature Embeding,把速度模型转化成Label Embeding,从而把寻找地震数据->速度模型的映射转化成了寻找Feature Embeding到Label Embeding的映射。(好像中间的东西是频率,因为振幅一定可以转化成频谱图,而频谱图反映位置信息或者运动信息正好对应速度。)

实例

论文《Graph knows Unknowns:Reformulate Zero-Shot Learning as Sample-Level Graph Recognition》,使用零样本学习方法解决由可见类迁移到不可见类中常见的领域偏差问题。具体做法是将图像通过裁剪操作将样本分解成几个细粒度元素,这些裁剪元素被视为样本级图像的节点,在GNN基础上,提取和融合它们间的局部子结构信息。贡献是提供了另一个零样本学习方法:利用GNNs将其重新表述为图像到语义的映射任务(有点像上述2)

小结

零样本学习

优点:适用于没有这么多的标注数据的,或者获取标注数据的成本非常大的现实问题。

缺点:

1. 广义(泛化)零样本学习(Generalized zero-shot learning):已见类模型占主导地位。准确率下降;

2. 枢纽化问题(Hubness):某些原始空间中的无关元素映射到多个测试样本特征空间中表示最近的几个近邻中。无关变有关。

3. 映射域偏移问题(The projection domain shift problem):由于没有测试类的未见类样例可以用于训练,泛化性较差。

问题

测井信息反映什么,和速度有关吗?

零样本学习中的词向量方法可以为可解释性提供什么帮助吗?

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值