文献阅读(二)

《基于对抗神经网络和正则化技术的高分辨率地震断层识别与解释》
High-resolution seismic faults interpretation based on adversarial neural networks with a regularization technique

摘要:

本文提出了一个用于断层识别的网络(叫FaultAdvNet),它有两个特点:一是使用小样本真实数据训练,属于轻量化NN,二是具有全局特征融合的优点。这两点不同于以往研究(网络提取的是目标层的局部特征,训练时候用的是合成数据)。那这样做有什么优点呢,一方面全局特征综合考虑目标和背景两部分信息,另一方面合成数据是对人工模型的正演模拟,经地质条件简化的模型难以反映地下复杂的实际构造情况,所以现场数据提供更多真实地下信息。
本文使用的现场数据来自墨西哥湾。
网络表现出了3方面优点:
1.断层具有较好的连续性;
2.断层边界清晰;
3.断层识别可信度高(概率为0.95~1)?(怎么得到这个概率的,难道说现场数据是有标签的?)
下面看网络是如何构成的,共有3个部分:
1.用于分割的模块(0.49M是什么意思?是该模块参数占所有参数的49%吗)
2.用于特征融合的模块
3.作为正则化约束的模块——鉴别器

概览

具有像素级别的断层识别能力(几十米)
网络设计理念:GAN(隐式正则项/辅助网络/鉴别器)+强化学习(对应的是鉴别器,以此作为隐式正则项)

网络结构+公式分析

数据体:
在这里插入图片描述
网络设计分为3个模块:
(1)分割模块->识别断层;
(2)特征融合模块->合并断层信息与反射信息;——创新点(克服模糊编辑、低连续性、将倾斜层误判为断层)
(3)鉴别器模块->判断全局特征图中的目标特征是预测断层(来自分割模块)还是真实断层(来自断层标签)
网络与GAN的相同之处在于(1)和(3)是类似GAN中的关系,相互促进。
网络与GAN的不同之处在于(2),约束NN关注全局信息。
网络是如何用鉴别器(像老师)实现对生成器(像学生)增强的?具体来说,网络(3)中的分类器会输出一个置信张量,以此判断(2)中融合了全局特征的2个断层结果是来自(1)还是来自真实标签?以此判断作为正则项来加强(1)的识别能力,目的是达到(1)和真实标签越来越接近。

网络结束后,后续处理的流程(为提高断层识别的分辨率以及连续性):
连续性增强+断层细化+异常值去除
如何实现的呢?具体来说,
求断层斜率,将相同断层斜率的不连续性视为断层点进行连续性改进;
预测的断层以给定的值(预测值和标签值的平均率)沿水平方向收缩到中心点;
如果专家判断&预测的断层不足1/9(断层像素的数量在每3 × 3矩阵中小于1),则将预测的断层作为散射或分叉去除。

以下公式都按照像素点的取值来理解
公式1(度量对背景信息的关注度):
对预测断层的关注度 P ˉ = 1 − P \bar{P}=1-P Pˉ=1P,取值[0,1]
对真实断层的关注度 y ˉ = 1 − y \bar{y}=1-y yˉ=1y,取值[0,1]
若是断层,则值小。以此削弱对断层的关注,加大对背景信息的关注。
公式2(以像素值的形式显示对背景信息的关注度)
预测断层的像素值 P ˉ s = P ˉ ⋅ S \bar{P}_{s}=\bar{P}\cdot S Pˉs=PˉS,取值[0,255]
真实断层的像素值 y ˉ s = y ˉ ⋅ S \bar{y}_{s}=\bar{y}\cdot S yˉs=yˉS,取值[0,255]
若是像素点来自相同地层,则像素值相同(明暗相近)。以此找到断层点。
公式3(目标区域亮处和暗处局部对比度的归一化),对于给定像素点附近的坐标(a,b)来计算,反映的是全局特征的度量:
预测断层处的对比度 P ˉ L = O L C N ( P ˉ s ) \bar{P}_{L}=O_{\mathrm{LCN}}\left(\bar{P}_{s}\right) PˉL=OLCN(Pˉs),取值[0,1]
真实断层处的对比度 y ˉ L = O L C N ( y ˉ s ) \bar{y}_{L}=O_{\mathrm{LCN}}\left(\bar{y}_{s}\right) yˉL=OLCN(yˉs),取值[0,1]
若是7⨉7内的像素值差异大,则经过高斯滤波平滑处理后,与原来差较大,即分子 O S N ( x ) O_{\mathrm{SN}}(x) OSN(x)大。以此突出边界位移比较大或者说明暗变化强的地方
涉及到的算子如下:
O L C N ( x ) = O S N ( x ) max ⁡ ( O S D ( x ) ⋅  mean,  O S D ( x ) ) , O S N ( x ) = x − x ∗  Gauss,  O S D ( x ) = O S N ( x ) 2 ∗  Gauss,   Gauss  = 1 2 π δ 2 e − [ ( a − m ) 2 + ( b − m ) 2 ] 2 δ 2 , ( δ = 2 ) , \begin{array}{l} O_{\mathrm{LCN}}(x)=\frac{O_{\mathrm{SN}}(x)}{\max \left(O_{\mathrm{SD}}(x) \cdot \text { mean, } O_{\mathrm{SD}}(x)\right)}, \\ O_{\mathrm{SN}}(x)=x-x * \text { Gauss, } \quad O_{\mathrm{SD}}(x)=O_{\mathrm{SN}}(x)^{2} * \text { Gauss, } \\ \text { Gauss }=\frac{1}{2 \pi \delta^{2}} e^{\frac{-\left[(a-m)^{2}+(b-m)^{2}\right]}{2 \delta^{2}}}, \quad(\delta=2), \end{array} OLCN(x)=max(OSD(x) mean, OSD(x))OSN(x),OSN(x)=xx Gauss, OSD(x)=OSN(x)2 Gauss,  Gauss =2πδ21e2δ2[(am)2+(bm)2],(δ=2),

如何训练

模块1:
8次epoch,
输入83条训练样本(偏移图像),输出预测结果(断层/非断层即y=0或1),
误差函数是由预测断层和预测非断层两部分构成,
在这里插入图片描述
模块2:
输入预测断层&真实断层(反演出局部特征 P P P y y y
输出全局特征 P ˉ L \bar{P}_{L} PˉL y ˉ L \bar{y}_{L} yˉL
模块3——分类任务:
6次epoch,
输入全局特征 P ˉ L \bar{P}_{L} PˉL y ˉ L \bar{y}_{L} yˉL
输出分类误差(衡量输出的分布与真实分布之间的差异),
误差函数是由来自预测断层和真实标签两部分组成(分类交叉熵的好处:避免梯度消失问题)
在这里插入图片描述
一个疑问
根据上述交叉熵函数,它能实现对于把是 P ˉ L \bar{P}_{L} PˉL类的误判成不是该类的情况,误差会增大。但是对于把不是 P ˉ L \bar{P}_{L} PˉL类的误判成该类,不会产生误差(因为系数是0),这合理吗?

由此做好分类后,再通过
在这里插入图片描述
计算模块1生成器的效果:显然分数越高越不好。

正则项约束
在这里插入图片描述

对实验结果的分析

为什么该网络能提高分辨率,显著性分析说明两点原因:
1.FaultAdvNet侧重于断层特征和周围沉积物反射层的位移(指对某个像素所属类别有较大影响的区域),因此FaultAdvNet断层预测对噪声和地震数据的低信噪比不敏感
2.此外,U-Net相对较低的注意力强度值(图9d )也意味着对预测数据的泛化能力较低。换句话说,如图9所示的模型注意力强度表明,FaultAdvNet的输出通过使用具有断层和周围沉积物的全局视图来辅助预测,从而实现了高分辨率的预测,这是常规U-Net所不具备的。(通过全局特征提高了模型注意力强度,提高模型泛化能力

通过实验具体分析模块2和模块3对传统U-Net的改进:
为了比较,在没有判别器和特征融合的正则化约束下,我们单独训练分割模块进行第二个循环。
在预测结果中(图10c ),斑点散布在断层周围,并与相邻断层相连,影响了断层的正确分离。尽管利用预测结果进行断层定位可能需要一定的后处理,但仅利用模糊输出很难分离出两个密集分布的断层,如图10c所示。
在这里插入图片描述

读后小结

作者认为,这篇文章最大的借鉴意义在于,以融合全局特征图作为隐式正则化项的神经网络,在其他地质特征识别任务中(如河道、盐丘、气团等)具有广阔的应用前景。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值