机器学习之训练 Kmeans 模型

代码如下:

from sklearn import datasets
from sklearn.cluster import KMeans
#导入数据
iris = datasets.load_iris()
x = iris.data
y = iris.target
#构建并训练K均值模型
kmeans = KMeans(n_clusters=3,random_state=0).fit(x)
print('K均值模型为:\n',kmeans)

import matplotlib.pyplot as plt
#获取模型聚类结果
y_pre = kmeans.predict(x)
#绘制iris原本的类别
plt.scatter(x[:,0],x[:,1],c = y)
plt.show()
#绘制K-Means聚类结果
plt.scatter(x[:,0],x[:,1],c = y_pre)
plt.show()


from sklearn.metrics import jaccard_similarity_score,fowlkes_mallows_score,adjusted_rand_score,davies_bouldin_score
print('K均值类模型的Jaccard系数:',jaccard_similarity_score(y,y_pre))
print('K均值类模型的FM系数:',fowlkes_mallows_score(y,y_pre))
print('K均值类模型的调整Rand系数:',adjusted_rand_score(y,y_pre))
print('K均值类模型的DB系数:',davies_bouldin_score(x,kmeans.labels_))

结果如下:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值