信号与系统纯概念

本文介绍了信号的类型,包括连续时间信号和离散时间信号,以及它们的能量和功率特性。讨论了时不变系统和因果系统,并阐述了傅立叶变换在信号分析中的应用,如频谱分析和无失真传输。还提到了滤波器的作用和分类,以及抽样和信号重建的概念。最后,总结了信号的周期性及其傅里叶级数和变换的特性。
摘要由CSDN通过智能技术生成

连续时间信号是指在信号的定义域内除有限个间断点外,任意时刻都有确定函数值的信号。连续时间信号的定义域一般为连续的区间。

离散时间信号是指信号的定义域为一些离散时刻。

若信号的归一化能量为非零的有限值,且其归一化功率为零,则该信号为能量信号。
若信号的归一化能量为无限值,且其归一化功率为非零的有限值,这个信号为功率信号。

对于一个连续时间系统,如果在零状态条件下,其输出响应与输入激励的关系不随输入激励作用于系统的时间起点而变化时,就称为时不变系统。

因果系统是指当且仅当输入信号激励系统时才产生系统输出响应的系统。

傅立叶系数Cn反应了周期信号中各次谐波的幅度值和相位值。故称周期信号的傅立叶级数Cn为周期信号的频谱。

无失真传输是指输出信号与输入信号相比,输出信号只在信号幅度因子上和出现时间上与输入信号有变化,而两者的波形上无任何变化。

滤波器可以使信号中的一部分频率分量通过,而使另一部分频率分量很少通过。滤波器分为低通滤波器,高通滤波器,带通滤波器,带阻滤波器。

将连续信号转换为离散信号的过程,称为信号抽样。
将离散信号转换为连续信号的过程称为信号重建。

模拟信号幅值连续的连续时间信号。
数字信号幅值离散的离散时间信号。

线性系统是指具有线性特性的系统。线性特性包括均匀特性与叠加特性。

系统还可分为稳定系统与非稳定系统。冲激信号的性质 筛选特性,取样特性。展缩特性卷积特性。

周期信号的频谱具有离散频谱特性和幅度衰减特性。

傅里叶变换的性质。线性特性,共轭对称特性。互易对称特性。展缩特性。时移特性。频移特性。卷积特性。乘积特性 时域微分特性 积分特性 频域微分特性 帕塞瓦尔定理。

连续信号的幅值可以是任意取值(也称连续取值),也可以只是一些有限的数值 (也称离散取值)。
自变量和信号幅值均连续的信号称为模拟信号。离散时间信号的幅值也可以是连续的或离散的。自变量和幅值均离散的信号称为数字信号。

按照信号的周期性划分,信号可以分为周期信号与非周期信号。周期信号都是定义在区间(_∞,+∞)上,且每隔一个固定的时间间隔重复变化。连续周期信号与离散周期信号的数学表示式分别为f(t)=f(t+Tn),一∞<t<∞f[k]=f[k+N],一∞ <k<∞,(k取整数满足以上式中的最小正数To和最小正整数N称为周期信号的基本周期。非周期信号就是不具有重复性的信号。

FS 傅里叶级数
FT 傅里叶变换
DTFT离散时间傅里叶变换
DFS离散傅里叶级数
CFS连续傅里叶级数
FFT傅里叶变换的快速变化

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值