信号与系统研讨(二)归一化正交函数在匹配滤波器中的应用

对于两个函数 u ( t ) u(t) u(t) v ( t ) v(t) v(t),如果
∫ a b u ( t ) v ∗ ( t ) d t = 0 \int_a^b u(t)v^*(t)dt=0 abu(t)v(t)dt=0
则称 u ( t ) u(t) u(t) v ( t ) v(t) v(t)在区间 ( a , b ) (a,b) (a,b)上是正交的。如果另外有
∫ a b ∣ u ( t ) ∣ 2 d t = 1 = ∫ a b ∣ v ( t ) ∣ 2 d t \int_a^b |u(t)|^2dt=1=\int_a^b|v(t)|^2dt abu(t)2dt=1=abv(t)2dt
则称这两个函数是归一化的。因此称这两个函数为归一化正交。如果在一个函数集 { ϕ k ( t ) } \{\phi_k(t)\} {ϕk(t)}中,每一对函数都是正交(或归一化正交)的,则称这个函数集为正交(或归一化正交)函数集。

我们发现对于一个实正交函数集 ϕ 1 ( t ) , ⋯   , ϕ N ( t ) \phi_1(t),\cdots,\phi_N(t) ϕ1(t),,ϕN(t),若他们仅在时间区间 0 ≤ t ≤ T 0\le t\le T 0tT上是非零的。则可以找到一个线性时不变系统,其单位冲激响应为 h i ( t ) = ϕ i ( T − t ) h_i(t)=\phi_i(T-t) hi(t)=ϕi(Tt),若输入信号为 ϕ j ( t ) \phi_j(t) ϕj(t),当 i = j i=j i=j时,在时刻 T T T,系统的输出是 1 1 1;当 i ≠ j i\not= j i=j时,在时刻 T T T,系统的输出为 0 0 0。其证明如下:

设系统响应为 y ( t ) y(t) y(t),则在时刻 T T T
y ( T ) = h i ( t ) ∗ ϕ j ( t ) = ∫ − ∞ ∞ h i ( T − τ ) ϕ j ( τ ) d τ = ∫ 0 T ϕ i ( τ ) ϕ j ( τ ) d τ \begin{aligned} y(T)&=h_i(t)*\phi_j(t)\\ &=\int_{-\infin}^\infin h_i(T-\tau)\phi_j(\tau)d\tau\\ &=\int_{0}^T \phi_i(\tau)\phi_j(\tau)d\tau \end{aligned} y(T)=hi(t)ϕj(t)=hi(Tτ)ϕj(τ)dτ=0Tϕi(τ)ϕj(τ)dτ
i ≠ j i\not=j i=j时,由于该函数集内均为实函数,故有 ϕ i ( t ) = ϕ i ∗ ( t ) \phi_i(t)=\phi_i^*(t) ϕi(t)=ϕi(t),所以
y ( T ) = ∫ − ∞ ∞ ϕ i ( τ ) ϕ j ( τ ) d τ = ∫ 0 T ϕ i ( τ ) ϕ j ∗ ( τ ) d τ = 0 \begin{aligned} y(T)&=\int_{-\infin}^\infin \phi_i(\tau)\phi_j(\tau)d\tau\\ &=\int_{0}^T \phi_i(\tau)\phi_j^*(\tau)d\tau\\ &=0 \end{aligned} y(T)=ϕi(τ)ϕj(τ)dτ=0Tϕi(τ)ϕj(τ)dτ=0
而当 i = j i=j i=j时,有
y ( T ) = ∫ − ∞ ∞ ϕ i ( τ ) ϕ i ( τ ) d τ = ∫ 0 T ∣ ϕ i ( τ ) ∣ 2 d τ = 1 \begin{aligned} y(T)&=\int_{-\infin}^\infin \phi_i(\tau)\phi_i(\tau)d\tau\\ &=\int_{0}^T |\phi_i(\tau)|^2d\tau\\ &=1 \end{aligned} y(T)=ϕi(τ)ϕi(τ)dτ=0Tϕi(τ)2dτ=1

因此,对于一个归一化正交的函数集,系统响应为 h i ( T − t ) h_i(T-t) hi(Tt)的线性时不变系统可以很好地从该集合里找到需要匹配的信号,是一个较为优秀的匹配滤波器。

可以用matlab对这个性质加以验证,这里以函数 ϕ k ( t ) = 1 T [ cos ⁡ k ω 0 t + sin ⁡ k ω 0 t ] \phi_k(t)=\frac{1}{\sqrt{T}}[\cos k\omega_0t+\sin k\omega_0t] ϕk(t)=T 1[coskω0t+sinkω0t]为例,验证代码如下:

omega0=2.*pi;
T=2.*pi/omega0;
syms x
res=int(phi(T,1,omega0,x)*phi(T,100,omega0,x),0,T);
disp(res);
function r = phi(T,k,omega,t)
  r=1.0./sqrt(T).*(cos(k*omega*t)+sin(k*omega*t));
end

通过不断调整两个函数的 k k k值,可以发现只有当 i = j i=j i=j时, T T T时刻的输出才为 1 1 1,否则为 0 0 0

特别地,对于函数集 ϕ k ( t ) = e j k ω 0 t \phi_k(t)=e^{jk\omega_0t} ϕk(t)=ejkω0t,由于
∫ 0 T e j k 1 ω 0 t ( e j k 2 ω 0 t ) ∗ d t       , k 1 ≠ k 2   a n d   k 1 , k 2 ∈ N + = ∫ 0 T e j ( k 1 − k 2 ) ω 0 t d t = e j ( k 1 − k 2 ) ω 0 t j ( k 1 − k 2 ) ω 0 ∣ 0 T = e j ( k 1 − k 2 ) ω 0 2 π ω 0 j ( k 1 − k 2 ) ω 0 − 1 = 0 \begin{aligned} &\int_0^T e^{jk_1\omega_0t}(e^{jk_2\omega_0t})^*dt\ \ \ \ \ ,k_1\not=k_2 \ and\ k_1,k_2\in N_+ \\ =&\int_0^T e^{j(k_1-k_2)\omega_0t}dt\\ =&\frac{e^{j(k_1-k_2)\omega_0t}}{j(k_1-k_2)\omega_0}|^T_0\\ =&\frac{e^{j(k_1-k_2)\omega_0\frac{2\pi}{\omega_0}}}{j(k_1-k_2)\omega_0}-1\\ =0 \end{aligned} ====00Tejk1ω0t(ejk2ω0t)dt     ,k1=k2 and k1,k2N+0Tej(k1k2)ω0tdtj(k1k2)ω0ej(k1k2)ω0t0Tj(k1k2)ω0ej(k1k2)ω0ω02π1

其在区间 ( 0 , T = 2 π ω 0 ) (0,T=\frac{2\pi}{\omega_0}) (0,T=ω02π)上是正交的,但由于
∫ 0 T ∣ e j k ω 0 t ∣ 2 d t = ∫ 0 T 1 d t = T \begin{aligned} \int_0^T |e^{jk\omega_0t}|^2 dt=\int_0^T1dt=T \end{aligned} 0Tejkω0t2dt=0T1dt=T
其并非归一化的函数集,不过通过归一化公式,将该函数变为 1 T e j k ω 0 t \frac{1}{\sqrt{T}}e^{jk\omega_0t} T 1ejkω0t后,该函数即

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ShadyPi

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值