普通并查集

并查集的重要思想在于,用集合中的一个元素代表集合。

这是一个树状的结构,要寻找集合的代表元素,只需要一层一层往上访问父节点(图中箭头所指的圆),直达树的根节点(图中橙色的圆)即可。根节点的父节点是它自己。
在这里插入图片描述

初始化

假如有编号为1, 2, 3, …, n的n个元素,我们用一个数组fa[]来存储每个元素的父节点(因为每个元素有且只有一个父节点,所以这是可行的)。一开始,我们先将它们的父节点设为自己。

int fa[MAXN];
inline void init(int n)
{
    for (int i = 1; i <= n; ++i)
        fa[i] = i;
}

查询

我们用递归的写法实现对代表元素的查询:一层一层访问父节点,直至根节点(根节点的标志就是父节点是本身)。要判断两个元素是否属于同一个集合,只需要看它们的根节点是否相同即可。

int find(int x)
{
    if(fa[x] == x)
        return x;
    else
        return find(fa[x]);
}

合并

先找到两个集合的代表元素,然后将前者的父节点设为后者即可,当然也可以将后者的父节点设为前者。

inline void merge(int i, int j)
{
    fa[find(i)] = find(j);
}

合并(路径压缩)

最简单的并查集效率较低,会形成一条长长的链,导致从底部向上查找到根结点困难。

如果要求每个元素到根节点的路径尽可能短
把沿途的每个节点的父节点都设为根节点即可

int find(int x)
{
    return x == fa[x] ? x : (fa[x] = find(fa[x]));
}

注意赋值运算符=的优先级没有三元运算符?:高,这里要加括号。

按秩合并

我们应该把简单的树往复杂的树上合并,而不是相反。因为这样合并后,到根节点距离变长的节点个数比较少。

我们用一个数组rank[]记录每个根节点对应的树的深度(如果不是根节点,其rank相当于以它作为根节点的子树的深度)。一开始,把所有元素的rank(秩)设为1。合并时比较两个根节点,把rank较小者往较大者上合并。

路径压缩和按秩合并如果一起使用,时间复杂度接近O(n),但是很可能会破坏rank的准确性。

初始化

inline void init(int n)
{
    for (int i = 1; i <= n; ++i)
    {
        fa[i] = i;
        rank[i] = 1;
    }
}

合并

inline void merge(int i, int j)
{
    int x = find(i), y = find(j);    //先找到两个根节点
    if (rank[x] <= rank[y])
        fa[x] = y;
    else
        fa[y] = x;
    if (rank[x] == rank[y] && x != y)
        rank[y]++;                   //如果深度相同且根节点不同,则新的根节点的深度+1
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值