本原勾股数组(PPT):
一个三元组(a, b, c),其中 a, b, c 没有公因数,且满足 a2 + b2 = c2。
a 和 b 的奇偶性不同 且 c 总是奇数。
c - b 与 c + b 没有公因数 而且 由于 (c - b)(c + b) = a2,所以 c - b 与 c + b 的积是平方数,这种情况只有在 c - b 与 c + b 自身都是平方数时才出现。
勾股数组定理 :
假设
c + b = s2
c - b = t2
(s > t >= 1 是任意没有公因数的奇数)
每个本原勾股数组(a, b, c)(其中 a 为奇数,b 为偶数)都可从如下公式得出:
a = st
b = (s2 - t2) / 2
c = (s2 + t2) / 2
费马大定理
n >= 3 时 方程 an + bn = cn 没有正整数解
推论:x4 + y4 = z2 (x, y, z互素) z 可以看作 c2, 所以这个等式相当于x4 + y4 = c4,由费马大定理得知,x, y, z 没有整数解。
ps:至今没有有效证明,但也没有被推翻
目前已证明 存在无穷多个素数 p 使得 ap + bp = cp 没有解且 p 不整除 abc
GCD
如果 gcd(a, b) = 1,则 a, b 互素。
欧几里得算法
要计算两个整数 a 与 b 的最大公因数, 先令 r-1 = a 且 r0 = b,然后计算相继的商和余数
ri-1 = qi+1 * ri + ri+1 (i = 0, 1, 2, …)
直到某余数 rn+1为 0,最后的非零余数 rn 就是 a 和 b 的最大公因数。
欧几里得算法的步数至多是 b 的位数的 7 倍。
线性方程定理
因数分解
素数整除性质
假设素数 p 整除乘积 a1a2……a3,则 p 整除 a1, a2, ……, ar 中至少一个因数。
(对合数不成立)
算术基本定理
每个整数 n >= 2 可唯一分解成素数乘积 n = p1p2……pr
如果 n 自身是素数,则记 n = n 并认为这是由单个素数构成的乘积。
当记作 n = p1p2……pr 时,并非指p1p2……pr 一定是不同的素数。
数 n 可以以某种方式分解成素数乘积。
仅有一种这样的因数分解 (除因数重排外)。
同余式
如果 m 整除 a - b,我们就说 a 与 b 模 m 同余,并记为 a ≡ b (mod m)
具有相同模的同余式在许多方面表现得很像通常的等式
费马小定理
欧拉函数
欧拉公式
欧拉函数公式
中国剩余定理
设 m 与 n 是整数,gcd(m, n) = 1,b 与 c 是任意整数,则同余式组 x ≡ b (mod m) 与 x ≡ c (mod n) 恰有一个解 0 <= x < mn。