《数论概论》

本原勾股数组(PPT):

一个三元组(a, b, c),其中 a, b, c 没有公因数,且满足 a2 + b2 = c2
a 和 b 的奇偶性不同 且 c 总是奇数。

c - b 与 c + b 没有公因数 而且 由于 (c - b)(c + b) = a2,所以 c - b 与 c + b 的积是平方数,这种情况只有在 c - b 与 c + b 自身都是平方数时才出现。

勾股数组定理 :
假设
c + b = s2
c - b = t2
(s > t >= 1 是任意没有公因数的奇数)
每个本原勾股数组(a, b, c)(其中 a 为奇数,b 为偶数)都可从如下公式得出:
a = st
b = (s2 - t2) / 2
c = (s2 + t2) / 2

费马大定理

n >= 3 时 方程 an + bn = cn 没有正整数解

推论:x4 + y4 = z2 (x, y, z互素) z 可以看作 c2, 所以这个等式相当于x4 + y4 = c4,由费马大定理得知,x, y, z 没有整数解。

ps:至今没有有效证明,但也没有被推翻

目前已证明 存在无穷多个素数 p 使得 ap + bp = cp 没有解且 p 不整除 abc

GCD

如果 gcd(a, b) = 1,则 a, b 互素。

欧几里得算法

要计算两个整数 a 与 b 的最大公因数, 先令 r-1 = a 且 r0 = b,然后计算相继的商和余数
ri-1 = qi+1 * ri + ri+1 (i = 0, 1, 2, …)
直到某余数 rn+1为 0,最后的非零余数 rn 就是 a 和 b 的最大公因数。
欧几里得算法的步数至多是 b 的位数的 7 倍。

线性方程定理

因数分解

素数整除性质

假设素数 p 整除乘积 a1a2……a3,则 p 整除 a1, a2, ……, ar 中至少一个因数。
(对合数不成立)

算术基本定理

每个整数 n >= 2 可唯一分解成素数乘积 n = p1p2……pr
如果 n 自身是素数,则记 n = n 并认为这是由单个素数构成的乘积。
当记作 n = p1p2……pr 时,并非指p1p2……pr 一定是不同的素数。

数 n 可以以某种方式分解成素数乘积。
仅有一种这样的因数分解 (除因数重排外)。

同余式

如果 m 整除 a - b,我们就说 a 与 b 模 m 同余,并记为 a ≡ b (mod m)

具有相同模的同余式在许多方面表现得很像通常的等式
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

费马小定理

在这里插入图片描述

欧拉函数

在这里插入图片描述

欧拉公式

在这里插入图片描述

欧拉函数公式

在这里插入图片描述

中国剩余定理

设 m 与 n 是整数,gcd(m, n) = 1,b 与 c 是任意整数,则同余式组 x ≡ b (mod m) 与 x ≡ c (mod n) 恰有一个解 0 <= x < mn。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值