搜索与图论 ---- spfa 判断负环

spfa 判断负环 cnt [ j ] = cnt [ t ] + 1 ,若当前点的最短路所包含的边数大于等于点数 n ,则说明该路径上存在负环,写法和 spfa 求最短路相同,只需要加一个 cnt [ ] 数组记录每个点的最短路的边数即可,在初始化队列的时候,需要将所有的点都放入到队列中,因为需要判断所有点的最短路上是否存在负环

需要从每个点都出发一次,才能完全确定此图中是否有环
cnt[j]=n 编号编号为j的节点是第n个加入路径的节点,
负环:环路之和为负, 求最短路的时候会不断在负环路打转。

bool spfa()
{
	memset(dist,0x3f,sizeof dist);
	queue<int> q;
	for(int i=1;i<=n;i++)
	{
		q.push(i);
		st[i]=true;
	}
	dist[1]=0;
	while(q.size())
	{
		int t=q.front();
		q.pop();
		st[t]=false;
		for(int i=h[t];i!=-1;i=ne[i])
		{
			int j=e[i];
			if(dist[j]>dist[t]+w[i])
			{
				dist[j]=dist[t]+w[i];
				cnt[j]=cnt[t]+1;
				// cnt[j]++;
				if(!st[j])
				{
					q.push(j);
					st[j]=true;
				}
				if(cnt[j]>=n) return true;
			}
		}
	}
	return false;
}

题目链接

给定一个 n 个点 m 条边的有向图,图中可能存在重边和自环, 边权可能为负数。

请你判断图中是否存在负权回路。

输入格式
第一行包含整数 n 和 m。

接下来 m 行每行包含三个整数 x,y,z,表示存在一条从点 x 到点 y 的有向边,边长为 z。

输出格式
如果图中存在负权回路,则输出 Yes,否则输出 No。

数据范围

1≤n≤2000,
1≤m≤10000,
图中涉及边长绝对值均不超过 10000。

输入样例:

3 3
1 2 -1
2 3 4
3 1 -4

输出样例:

Yes

spfa 判断负环和 spfa 求最短路基本相同,新增一个 cnt 数组,若存在负环,在负环出一定会循环多次最终超过 n ,因此判断 cnt 数组是否超过 n 就可以判断是否存在负环。

代码样例

#include<iostream>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<vector>
#include<stack>
#include<queue>
#include<sstream>
#include<map>

#define x first
#define y second

using namespace std;
typedef long long ll;
typedef pair<int, int> PII;
const int N = 100010;
const int MOD = 1000000007;
const int INF = 0x3f3f3f3f;

int gcd(int a, int b){return b ? gcd(b, a % b) : a;}
int lowbit(int x) {return x & -x;}

int n, m;
int h[N], e[N], ne[N], w[N], idx;
queue<int> q;
int dist[N], cnt[N];
bool st[N];

void add(int a, int b, int c)
{
	e[idx] = b;
	ne[idx] = h[a];
	w[idx] = c;
	h[a] = idx ++ ;
}

bool spfa()
{
	
	memset(dist, 0x3f, sizeof dist);
	for(int i = 1; i <= n; i ++ ){
		q.push(i);
		st[i] = true;
	}
	
	while(q.size()){
		int t = q.front();
		q.pop();
		st[t] = false;
		for(int i = h[t]; i != -1; i = ne[i]){
			int j = e[i];
			if(dist[j] > dist[t] + w[i]){
				dist[j] = dist[t] + w[i];
				cnt[j] = cnt[t] + 1;
				if(cnt[j] >= n) return true;
				if(!st[j]){
					st[j] = true;
					q.push(j);
				}
			}
		}
	}
	
	return false;
	
}

int main()
{
	cin >> n >> m;
	memset(h, -1, sizeof h);
	for(int i = 0; i < m; i ++ ){
		int a, b, c;
		cin >> a >> b >> c;
		add(a, b, c);
	}
	
	if(spfa()) cout << "Yes" << endl;
	else cout << "No" << endl;

	return 0;
}




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

在人间负债^

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值