【阅读笔记】人脸隐私保护CLIP2Protect

【阅读笔记】 CLIP2Protect: Protecting Facial Privacy using Text-Guided Makeup via Adversarial Latent Search

0.介绍

原始论文地址

论文代码地址

基于深度学习的人脸识别引起了严重的隐私问题,一些未经授权的人脸识别系统(FR system)会对用户进行追踪,因此需要一种有效的方法来保护面部隐私防止未知FR系统的侵害。

一个理想的面部隐私保护算法必须在自然(naturalness)和隐私保护(privacy protection)间进行平衡,即受保护的图像必须与原始人脸图像相近,能够被人类观察者认出,同时欺骗未知的人脸识别系统。

1.相关工作

混淆方法(Obfuscation Methods):利用掩码、滤波和图像变换等降低原始人脸图像的质量,缺点是会产生不希望的伪影(artifacts),降低用户的体验。

基于噪声的对抗性攻击(Noise-based Adversarial Attacks):对抗性攻击旨在对输入的人脸图像加入针对性的微小的扰动,从而让FR模型产生错误的输出结果。缺点是使得产生的输出图像带有噪声,影响用户体验。

无限制性对抗性攻击(Unrestricted Adversarial Attacks,UAAs):不受扰动范围的约束,可以引起较大且有意义的扰动。

视觉-语言建模方法(Vision-Language Modelling):基于文本引导的图像处理方法,利用文本提示操作图像(DiffusionCLIP,StyleGAN等)。

2.本文提出的方法

希望在不影响用户体验的情况下,保护面部隐私,免受未知FR模型(black-box FR)的影响。该方法的核心是利用预训练的生成模型(Generative Model,如GAN)在低维潜在空间(low-dimensional latent space)中进行搜索,以生成具有对抗性的受保护面部图像。对于这里的低维潜在空间,我个人的理解是将原始图像映射到低维向量的空间,如224*224*3的原始图像被映射为768维的特征向量。 同时利用文本提示的方式引导自然的化妆扰动,保持自然的同时保护隐私。

2.1前期工作

论文中, x \boldsymbol{x} x代表原始的人脸图像, f ( x ) f(\boldsymbol{x}) f(x)代表FR模型提取的图像的归一化特征, D ( x 1 , x 2 ) = D ( f ( x 1 ) , f ( x 2 ) ) D(\boldsymbol{x}_1,\boldsymbol{x}_2)=D(f(\boldsymbol{x}_1),f(\boldsymbol{x}_2)) D(x1,x2)=D(f(x1),f(x2))代表两张图像之间的相似度。一般来看,FR系统有两种工作方式:验证(verification)识别(identification)。保护方法应该要同时针对这两种情况来保护用户的身份,保护的方式可以分为冒充(impersonation)躲避(dodging)

验证系统(verification system):当 D ( x 1 , x 2 ) D(\boldsymbol{x}_1,\boldsymbol{x}_2) D(x1,x2)小于某个阈值时,FR系统会将两张图像判断为是同一个人。冒充(impersonation) 意味着被保护的图像与另一张特定身份的图像像匹配(假匹配false match),躲避(dodging) 意味着被保护的图像和这个人的其他图像不匹配(假不匹配false non-match)。

识别系统(identification system):FR系统将输入图像 x \boldsymbol{x} x与一组人脸图像(图像库)进行比较,输出与 x \boldsymbol{x} x最相近的身份。类似的,冒充(impersonation) 意味着 x \boldsymbol{x} x与图像库中另一张特定身份的图像匹配,躲避(dodging) 意味着防止 x \boldsymbol{x} x与图像库中同一人的其他图像匹配。

因此,对于原始图像 x \boldsymbol{x} x,目标是生成受保护的图像 x p \boldsymbol{x}^p xp和冒充的图像 x t \boldsymbol{x}^t xt,使得 D ( x p , x ) D(\boldsymbol{x}^p,\boldsymbol{x}) D(xp,x)很大(successful dodging attack)而 D ( x p , x t ) D(\boldsymbol{x}^p,\boldsymbol{x}^t) D(xp,xt)很小(successful impersonation)。同时希望图像的真实标签 O ( ) O() O()满足 O ( x ) ≠ O ( x t ) O(x) \ne O(x^t) O(x)=O(xt),且希望最小化 H ( x p , x ) H(x^p,x) H(xp,x), H H H量化了相对于原始图像 x \boldsymbol{x} x引入的不自然程度。由于希望欺骗黑箱FR模型,因此 D D D的具体计算公式是未知的。整个优化过程算法如下:

min ⁡ x p L ( x p ) = D ( x p , x t ) − D ( x p , x ) H ( x p , x ) ≤ ϵ \min_{\boldsymbol{x}^p} L(\boldsymbol{x}^p) = D(\boldsymbol{x}^p,\boldsymbol{x}^t) - D(\boldsymbol{x}^p,\boldsymbol{x}) \\ H(\boldsymbol{x}^p,\boldsymbol{x}) \leq \epsilon

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值