MATLAB信号处理——信号的变换(1)

2-1  Z变换

       Z变换(Z-transformation)可将时域信号(离散时间序列)变换为在复频域的表达式。即                                                                 X(z) = \sum_{-\infty }^{\infty }x(n)z^{-n}

       上式为双边Z变换,若x的区间为(-\infty,0】或【0,\infty),则称为单边Z变换。由于单边Z变换可以考虑到初始条件,所以用于在已知系统的初始状态以及序列的初始条件时求取系统的瞬态反应,既可以求零输入响应,又可以求零状态响应。

       双边Z变换与单边Z变换的关系为\sum_{-\infty }^{\infty }x(n)z^{-n} = \sum_{-\infty }^{-1}x(n)z^{-n}+\sum_{0}^{\infty }x(n)z^{-n}

   1)Z变换的收敛域

       Z变换收敛的充要条件是它满足绝对可和条件\left | \sum_{0 }^{+\infty}x(n)z^{-n} \right | < \infty\left | \sum_{-\infty }^{+\infty}x(n)z^{-n} \right | < \infty,在z平面上使上式成立的z的取值范围Rx称为任意给定的有界序列x(n)的Z变换X(z)的收敛域。

     1.有限长序列

        形如x(n) = x(n),n{_{1}}^{}\leqslant n\leqslant n{_{2}}^{},其Z变换为X(z) = \sum_{n{_{1}}^{}}^{n{_{2}}^{}}x(n)z^{-n},只要满足级数的每一项有界,则级数收敛,收敛域为0<|z|<\infty.

    2.单边序列

       形如x(n) = x(n),n\geqslant n{_{1}}^{},其Z变换为X(z) = \sum_{n{_{1}}^{}}^{\infty }x(n)z^{-n},当n1>0时,根据根值判别法\lim_{n\rightarrow \infty }\sqrt[n]{\left | x(n)z^{-n} \right |} < 1,此时级数的收敛域为\left | z \right |> \lim_{n\rightarrow \infty }\sqrt[n]{\left | x(n) \right |} =R{_{1}}^{},当n1<0时,此时级数全收敛,所以收敛域为R1<|z|<\infty

       形如x(n) = x(n),n\leqslant n{_{1}}^{},其Z变换为X(z) = \sum_{n=-\infty }^{n{_{2}}^{}}x(n)z^{-n} = \sum_{n= -n{_{2}}^{}}^{\infty }x(-n)z^{n},当n2<0时,根据根值判别法\lim_{n\rightarrow \infty }\sqrt[n]{\left | x(-n) z^{n}\right |} < 1,此时级数的收敛域为\left | z \right |<\lim_{n\rightarrow \infty }\sqrt[n]{\left | x(n) \right |} =R{_{1}}^{},当n2>0时,此时相当于增加了一个有限长序列,除去原点,收敛域为0<|z|<R2。

    3.双边序列

       双边序列的描述函数为x(n) = x(n)[u(-n-1)+u(n)],其Z变换为                      X(z) = \sum_{-\infty }^{\infty }x(n)z^{-n}=\sum_{-\infty }^{-1}x(n)z^{-n}+\sum_{0}^{\infty }x(n)z^{-n},其收敛域为R1<|z|<R2

   2)Z变换的性质

      

图片来自于百度百科——Z变换 

   3)Z反变换

       定义X(z)Z反变换为x(n) =\frac{1}{2\pi }\oint_{c}^{}X(z)z^{n-1}dz,c为X(z)收敛域中的一条封闭曲线,求Z反变换的方法主要有3种:

    1.留数法

       这是最常用的方法,首先我们知道洛朗级数公式:若X(z) = \sum_{n{_{1}}^{}}^{n{_{2}}^{}}x(n)z^{-n},R{_{x-}}^{}<|z|<R{_{x+}}^{},则x(n) =\frac{1}{2\pi\cdot j }\oint_{c}^{}X(z)z^{n-1}dz,c\epsilon (R{_{x-}}^{},R{_{x+}}^{})

为计算围线积分,由留数定理可知:x(n) =\frac{1}{2\pi\cdot j }\oint_{c}^{}X(z)z^{n-1}dz=\sum_{k}^{}Res[X(z)z^{n-1}]{_{z=z{_{k}}^{}}}^{}

x(n) =\frac{1}{2\pi\cdot j }\oint_{c}^{}X(z)z^{n-1}dz=\sum_{m}^{}Res[X(z)z^{n-1}]{_{z=z{_{m}}^{}}}^{}Z{_{k}}^{}为c内的第k个极点,Z{_{m}}^{}为c外的第m个极点。使用第二式的条件是分母的z次数比分子的高2次以上。

       留数的求法:当Zr为一阶极点的留数时,Res[X(z)z^{n-1}]{_{z=z{_{r}}^{}}}^{}=[(z-z{_{r}}^{})X(z)z{_{}}^{n-1}]{_{z=z{_{r}}^{}}}^{},

当Zr为一阶多重极点时,Res[X(z)z^{n-1}]{_{z=z{_{r}}^{}}}^{}=\frac{1}{(l-1)!}\frac{d^{l-1}}{dz^{l-1}}[(z-z{_{r}}^{})^{l}X(z)z{_{}}^{n-1}]{_{z=z{_{r}}^{}}}^{}

    2.部分分式法

       将X(z)分解成一些简单而常见的部分方式之和,然后分别求出各部分分式的反变换,最后见个各分式的反变换相加即可得到x(n)。

                     X(z)=\frac{B(z)}{A(z)}=X{_{1}}^{}(z)+X{_{2}}^{}(z)+\cdot \cdot \cdot +X{_{k}}^{}(z)

                  x(n)=Z^{^{-1}}[X{_{1}}^{}(z)]+Z^{-1}[]X{_{2}}^{}(z)]+\cdot \cdot \cdot +Z^{-1}[X{_{k}}^{}(z)]

   3.长除法

      这是一个很复杂的方法,运算量也十分巨大,有兴趣地可以看下面                            https://blog.csdn.net/Fitz_K/article/details/106453516

      MATALB提供了ztrans()函数来计算Z变换,提供了iztrans()函数和residuze函数来计算Z反变换,其中的residuez函数是使用留数法来计算Z反变换的。

       ztrans函数的用法为 F = ztrans(f),iztrans函数的用法为 f = iztrans(F)。

       residuez函数的用法为[R P K] = resduez(B,A),其中B和A分别为X(z)多项式分子多项式和分母多项式的系数,R为留数向量,P为极点向量,K为直接项系数,仅仅在分子项最高次幂对于分母时存在。

参考资料:百度百科——Z变换https://baike.baidu.com/item/Z%E5%8F%98%E6%8D%A2/1915180

                  MATLAB帮助文档

               《MATLAB信号处理》沈再阳

  • 2
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值