卡特兰数小练

卡特兰数

简介

卡特兰数是组合数学中一个常出现于各种计数问题中的数列。以中国蒙古族数学家明安图和比利时的数学家欧仁·查理·卡特兰的名字来命名,其前几项为(从第0项开始):1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012, 742900, 2674440, 9694845, 35357670, 129644790, 477638700, 1767263190, 6564120420, 24466267020, 91482563640, 343059613650, 1289904147324, 4861946401452, …

卡特兰数

在这里插入图片描述

满足以下递推关系 :

在这里插入图片描述

原理

设h(n)为catalan数的第n项,令h(0)=1,h(1)=1,catalan数满足递推式 [3] :

​ **h(n)= h(0)*h(n-1)+h(1)h(n-2) + … + h(n-1)h(0) (n≥2)

h(n)=h(n-1)(4n-2)/(n+1)

h(n+1)=h(n) * (4*n + 2) / (n + 2)

递推关系的解为:

h(n)=C(2n,n)/(n+1) (n=0,1,2,…)

递推关系的另类解为:

h(n)=C(2n,n) - C(2n,n-1) (n=0,1,2,…)

化简得:

h(n)=C(2n,n) /(n+1) (n=0,1,2,…)

应用

括号化

满足条件的01序列

2n位二进制数中填入n个1的方案数为c(2n,n),不填1的其余n位自动填0。从中减去不符合要求(由左而右扫描,0的累计数小于1的累计数)的方案数即为所求。

不符合要求的数的特征是由左而右扫描时,必然在某一奇数位2m+1位上首先出现m+1个1的累计数和m个0的累计数,此后的2(n-m)-1位上有n-m个 0和n-m-1个1。如若把后面这2(n-m)-1位上的0和1互换,使之成为n-m个1和n-m-1个0,结果得1个 由n+1个1和n-1个0 组成的2n位数,即一个不合要求的数对应于一个由n+1个1和n-1个0组成的排列.

反过来,任何一个由n+1个1和n-1个0组成的2n位二进制数,由于1的个数多2个,2n为偶数,故必在某一个奇数位上出现1的累计数超过0的累计数。同样在后面部分0和1互换,使之成为由n个1和n个0组成的2n位数,即n+1个1和n-1个0组成的2n位数必对应一个不符合要求的数。

​ 可以将上述转化为一张二维图来理解:

在这里插入图片描述

令横坐标为0的个数,纵坐标为1的个数,则题目可以看成是从(0,0)到(n,n)的路线方案数。

符合条件的路线一定在绿线的右方(包括绿线)红线为违规点,即之前的第2m+1位必定在红线上,将越过红线的点之后的直线按红线翻转(0-1互换),得到的坐标即是(n-1,n+1)(目标为(n,n))。于是,走到**(n,n)不符合条件的路线数就等价于走到(n-1,n+1)**的路线总数

我们设f[n]为走n步的路线总数。我们很容易得到f[2n]=C(2n,n) 。

而不符合条件的数量是C(2n,n+1)或C(2n,n-1),于是答案就是C(2n,n)-C(2n,n-1) ,化简得 C(2n,n)/(n+1)

本题数据范围极大,且涉及到除运算,因此使用建议求逆元,目前这里采用[费马小定理](费马小定理_百度百科 (baidu.com))求逆元,当然也可以使用其他方式

#include <iostream>
using namespace std;
const int mod = 1e9+7;
#define LL long long
int fastpow(int a,int b,int p)
{
    int res=1;
    while(b)
    {
        if(b&1) res=(LL) res*a%p;
        b>>=1;
        a=(LL) a*a%p;
    }
    return res;
}

int main()
{
    int n;
    cin>>n;
    int res=1;
    int p=mod;
    for(int i=n+1;i<=2*n;i++) res=(LL) res*i%p;
    for(int i=1;i<=n;i++) res=(LL) res*fastpow(i,p-2,p)%p;
    res=(LL) res*fastpow(n+1,p-2,p)%p;
    cout<<res<<endl;
    return 0;
}

首先,我们设 f(n)=序列个数为n的出栈序列种数。

我们假定,最后出栈的元素为k,显然,k取不同值时的情况是相互独立的,也就是求出每种k最后出栈的情况数后可用加法原则,由于k最后出栈,因此,在k入栈之前,比k小的值均出栈,此处情况有**f(k-1)种,而之后比k大的值入栈,且都在k之前出栈,因此有f(n-k)**种方式,由于比k小和比k大的值入栈出栈情况是相互独立的,此处可用乘法原则,**f(n-k)*f(k-1)**种,求和便是Catalan递归式。

1n的序列分成两个序列,其中一个是1k-1,序列个数为k-1,另外一个是k+1~n,序列个数是n-k。

一个栈(无穷大)的进栈序列为1,2,3,…,n,有多少个不同的出栈序列?

此时,我们若把k视为确定一个序数,那么根据乘法原理,f(n)的问题就等价于——序列个数为k-1的出栈序列种数乘以序列个数为n - k的出栈序列种数,即选择k这个序数的 f(n) =f(k-1) * f(n-k)。而k可以选1到n,所以再根据加法原理,将k取不同值的序列种数相加,得到的总序列种数为:f(n) = f(0)f(n-1) + f(1)f(n-2) + …… + f(n-1)f(0),即为卡特兰数

对于每一个数来说,必须进栈一次、出栈一次。我们把进栈设为状态‘1’,出栈设为状态‘0’。n个数的所有状态对应n个1和n个0组成的2n位二进制数。由于等待入栈的操作数按照1‥n的顺序排列、入栈的操作数b大于等于出栈的操作数a(a≤b),因此输出序列的总数目=由左而右扫描由n个1和n个0组成的2n位二进制数,1的累计数不小于0的累计数的方案种数。

这题与上一题的不同之处就是这里求的是 1的累计数不小于0的累计数的方案种数,上一题刚好反过来,其实是一样的了。

类似问题

一位大城市的律师在她住所以北n个街区和以东n个街区处工作。每天她走2n个街区去上班。如果她从不穿越(但可以碰到)从家到办公室的对角线,那么有多少条可能的道路。

在圆上选择2n个点,将这些点成对连接起来使得所得到的n条线段不相交的方法数。

给定节点组成二叉搜索树

给定N个节点,能构成多少种不同的二叉搜索树

(能构成 h(N) 个)

(这个公式的下标是从h(0)=1开始的)

n对括号正确匹配数目

给定n对括号,求括号正确配对的字符串数,例如:

0对括号:[空序列] 1种可能

1对括号:() 1种可能

2对括号:()() (()) 2种可能

3对括号:((())) ()(()) ()()() (())() (()()) 5种可能

那么问题来了,n对括号有多少种正确配对的可能呢。

考虑n对括号时的任意一种配对方案,最后一个右括号有唯一的与之匹配的左括号,于是有唯一的表示A(B),其中A和B也是合法的括号匹配序列

假设S(n)为n对括号的正确配对数目,那么有递推关系S(n)=S(0)S(n-1)+S(1)S(n-2) +…+S(n-1)S(0),显然S(n)是卡特兰数。

扩展

大佬博客:

卡特兰数相关整理_DannieG的博客-CSDN博客

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值