代数与逻辑:作业一 线性模型

代数与逻辑:作业一 线性模型

一、作业要求

  1. 简述线性回归模型的数学表达与物理意义,举例说明。
  2. 编程实现线性回归模型的求解(最小二乘法与梯度下降法)。
  3. 选择公开数据集,编程实现利用线性回归模型进行预测建模。注:数据集选择回归问题数据集,先对数据进行规范化处理,然后选择部分数据训练模型,剩余数据对模型进行测试,重复20次数据集划分,输出平均预测精度。

二、回归模型的数学表达式与物理意义

1、什么是线性回归?

线性回归是一种算法,它提供自变量和因变量之间的线性关系来预测未来事件的结果。它是一种在数据科学和机器学习中用于预测分析的统计方法。

自变量也是由于其他变量的变化而保持不变的预测变量或解释变量。但是,因变量会随着自变量的波动而变化。回归模型预测因变量的值,即被分析或研究的响应或结果变量。

因此,线性回归是一种监督学习算法,它模拟变量之间的数学关系,并对销售、工资、年龄、产品价格等连续或数值变量进行预测。

当数据中至少有两个变量可用时,这种分析方法是有利的,如在股票市场预测、投资组合管理、科学分析等中所观察到的。

倾斜的直线代表线性回归模型。

在这里插入图片描述

在上图中,x轴是自变量,y轴是输出/因变量,回归线是模型的最佳拟合线,在这里,为适合所有问题的给定数据点绘制了一条线。因此,它被称为“最佳拟合线”。线性回归算法的目标是找到上图中看到的最佳拟合线。

2、线性回归方程

线性回归线具有Y = a + bX形式的方程,其中X是解释变量,Y是因变量。直线的斜率为ba是截距( x = 0 时y的值)。

举个例子,我们考虑一个涵盖RAM 大小及其相应成本的数据集。

在这种情况下,数据集包含两个不同的特征:内存(容量)和成本。RAM 越多,RAM 的购买成本就越高。

Ram CapacityCost
2 GB$12
4 GB$16
8 GB$28
16 GB$62

如果我们在 X 轴上绘制 RAM,在 Y 轴上绘制其成本,则从图表的左下角到右上角的线表示 X 和 Y 之间的关系。在散点图上绘制这些数据点,我们得到下图:

在这里插入图片描述

内存成本比可能会根据不同的制造商和RAM版本而有所不同,但数据趋势显示出规律。左下角的数据显示内存更小且价格更低的 RAM,这条线一直延伸到图表的右上角,其中 RAM 容量更大且成本更高)。

回归模型定义了 X 和 Y 变量之间的线性函数,可以最好地展示两者之间的关系。它由上图中的斜线表示,其目标是确定最适合所有单个数据点的最佳“回归线”。

三、线性回归模型的求解

1、最小二乘法

我们定义一个数据集,其中每个特征x都有一个响应值y。

在这里插入图片描述

回归方程表示:

h(xi)=β01xi

其中h(x_i)表示第i个观察的预测响应值,b_0和b_1是回归系数,分别代表回归线的y截距和斜率。

使用最小二乘法原理我们需要考虑

在这里插入图片描述

这里,e_i 是第 i 个观察中的残差。 因此,我们的目标是最小化总残差。我们将平方误差或成本函数 J 定义为:

在这里插入图片描述

我们的任务是找到 b_0 和 b_1 的值,其中 J(b_0,b_1) 最小。

在这里插入图片描述

其中 SS_xy 是 y 和 x 的交叉偏差之和:

在这里插入图片描述

SS_xx 是 x 的平方偏差之和:

在这里插入图片描述

上述问题用python实现:

import numpy as np
import matplotlib.pyplot as plt

def estimate_coef(x, y):
	# 观察次数/点数
	n = np.size(x)

	# x 和 y 向量的平均值
	m_x = np.mean(x)
	m_y = np.mean(y)

	# 计算关于 x 的交叉偏差和偏差
	SS_xy = np.sum(y*x) - n*m_y*m_x
	SS_xx = np.sum(x*x) - n*m_x*m_x

	# 计算回归系数
	b_1 = SS_xy / SS_xx
	b_0 = m_y - b_1*m_x

	return (b_0, b_1)

def plot_regression_line(x, y, b):
	# 将实际点绘制为散点图
	plt.scatter(x, y, color = "m",
			marker = "o", s = 30)

	# 预测响应向量
	y_pred = b[0] + b[1]*x

	plt.plot(x, y_pred, color = "g")

	plt.xlabel('x')
	plt.ylabel('y')

	plt.show()

def main():
	# 观察/数据
	x = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
	y = np.array([1, 3, 2, 5, 7, 8, 8, 9, 10, 12])

	# 估计系数
	b = estimate_coef(x, y)
	print("估计系数:\nb_0 = {} \
		\nb_1 = {}".format(b[0], b[1]))

	# 绘制回归线
	plot_regression_line(x, y, b)

if __name__ == "__main__":
	main()

运行的结果是:

估计系数:
b_0 = 1.2363636363636363 
b_1 = 1.1696969696969697

在这里插入图片描述

2、梯度下降法

我们将逐步迭代以达到最佳点。W 从任意的权重值开始,并检查该点的梯度。我们的目标是达到谷底的最小值。所以我们的梯度应该总是负的。

在这里插入图片描述

接下来,我们需要更新权重以使它们更接近最小值。我们有以下等式:

在这里插入图片描述

这意味着下一次迭代中的权重将是上一次迭代中的权重减去更新。现在这个更新有两个组成部分:方向——斜率或梯度,以及——步长。渐变将是:

在这里插入图片描述

我们需要考虑的第二个组成部分是步长——α。这是一个超参数,我们需要在算法开始之前决定它。如果 α 太大,那么我们的优化器将大跃进,永远找不到最小值。相反,如果将它设置得太小,优化器将永远达到最小值。因此,我们需要事先为 α 设置一个最佳值。

因此,我们的权重更新方程变为:

在这里插入图片描述

总的步骤就是:

  1. 初始化权重 W0、W1 的值——可以是任意值,步长 α——需要一个好的值。
  2. 找到所有 X 的目标 Ŷ = W0 + W1.X 的预测。
  3. 计算误差值 (Ŷ-Y) 和 MSE。
  4. 根据梯度下降更新规则更新权重。
  5. 重复 2-4。

上述工作我们用Python来实现一下:

import numpy as np
import matplotlib.pyplot as plt

# 定义数据集
x = np.array([1, 3, 5])
y = np.array([5, 12, 18])

# 初始化权重和选择步长
W0_new = 0
W1_new = 0
a = 0.04
MSE = np.array([])

# 对数据集进行多次迭代,计算每次迭代的均方误差并更新权重
for iteration in range(1, 11):
    y_pred = np.array([])   # 预测目标
    error = np.array([])    # 每次迭代的误差值:(Ŷ-Y)
    error_x = np.array([])
    
    # 分配更新的权重
    W0 = W0_new
    W1 = W1_new
    
    # 逐行迭代x,以计算Ŷ和错误
    for i in x:
        # Ŷ = W0 + W*X
        y_pred = np.append(y_pred, (W0 + W1*i))
        
    error = np.append(error, y_pred-y)      # 计算每个样本的误差
    error_x = np.append(error_x, error*x)
    MSE_val = (error**2).mean()     # 计算MSE值
    MSE = np.append(MSE, MSE_val)
    
    W0_new = W0 - a*np.sum(error)       # 计算更新W0
    W1_new = W1 - a*np.sum(error_x)     # 计算更新W1

# 查看最终权重   
print("W0=", W0_new)
print("W1=", W1_new)

# 检查预测的目标变量Ŷ和误差
print("y_pred:", y_pred)
print("error:", error)

# 绘制每次迭代的均方误差值
print("MSE:", MSE)


plt.plot(MSE, "b-o")
plt.title("每次迭代的均方误差")
plt.xlabel("迭代")
plt.ylabel("MSE 值")
plt.show()

运行的结果是:

W0= 1.1474479185822484
W1= 3.448230314024035
y_pred: [ 4.5923844  11.51794949 18.44351457]
error: [-0.4076156  -0.48205051  0.44351457]
MSE: [164.33333333  40.35466667  10.05422336   2.64304765   0.8249095
   0.37371724   0.25687049   0.2220511    0.20759194   0.19840945]

在这里插入图片描述

四、利用线性回归模型进行预测建模

我们将使用 scikit-learn 中提供的加利福尼亚房价集。这记录了加州住房市场的 8 个属性以及中位价格的测量值。

1、导入依赖项

import pandas as pd
from sklearn import datasets, linear_model
from sklearn.model_selection import train_test_split
from matplotlib import pyplot as plt

2、加载数据集,将其转换为数据框并定义列名

# 加载糖尿病数据集
columns = "age sex bmi map tc ldl hdl tch ltg glu".split() # 声明列名
diabetes = datasets.load_diabetes() # 从 sklearn 调用糖尿病数据集
df = pd.DataFrame(diabetes.data, columns=columns) # 将数据集加载为 pandas 数据框
y = diabetes.target # 将目标变量(因变量)定义为 y

3、定义训练集和测试集

# 创建训练和测试变量
X_train, X_test, y_train, y_test = train_test_split(df, y, test_size=0.2)
print(X_train.shape, y_train.shape)
print(X_test.shape, y_test.shape)
(353, 10) (353,)
(89, 10) (89,)

4、拟合模型

# 拟合模型
lm = linear_model.LinearRegression()
model = lm.fit(X_train, y_train)
predictions = lm.predict(X_test)

5、预测

print(predictions[0:5])
[181.69402001 151.31483349 159.42134908 188.13122001 168.83426575]

6、绘制模型

plt.scatter(y_test, predictions)
plt.xlabel("True Values")
plt.ylabel("Predictions")

在这里插入图片描述

7、打印准确度

print("Score:", model.score(X_test, y_test))

8、计算平均预测精度

我们运行20次然后记录每次的精度然后求平均值。

from numpy import *
score = [0.5435576684039353, 0.5278223090263431, 0.5428586295068993, 0.48953519457408035, 0.4249912062254072, 0.42650991893500434, 0.5787191615733711, 0.37981926356039364, 0.4170187886884227, 0.5082912328753193 /
         0.5202580979798506, 0.532535890174009, 0.3087861414400682, 0.4466007206335131, 0.460212035904611, 0.40788387790519776, 0.5631222570259837, 0.5183668561533962, 0.4256938089725384, 0.4183517892689459]
mean_score = mean(score)
print(mean_score)

平均值是:

0.49417809118980843
  • 2
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
程序员是一种从事计算机编程和开发工作的专业人员。他们使用不同编程语言和工具来设计、编写和测试软件程序,以解决问题和满足用户需求。程序员需要具备良好的逻辑思维能力和数学基础,其中包括线性代数线性代数是研究向量空间及其上的线性变换的数学分支。对于程序员而言,线性代数在计算机图形学、机器学习人工智能等领域都起着重要的作用。在计算机图形学中,程序员可以利用线性代数的概念和公式来进行三维图像的变换和计算,如平移、旋转和缩放等。这些操作对于设计和开发3D游戏、动画和虚拟现实应用至关重要。 在机器学习人工智能方面,线性代数也是不可或缺的。程序员需要理解和应用矩阵和向量的运算和转换,以建立和优化机器学习模型线性代数的概念例如线性方程组和特征值分解可用于解决数据分析和统计建模中的多变量问题。此外,矩阵和向量的运算能够高效地处理大规模数据集,提升算法的性能和效率。 程序员们可以在CSDN等专业IT社区中获取关于线性代数和其他技术的学习资料和经验分享。这些平台提供了丰富的教程、博客和论坛,程序员们可以互相学习和交流。通过积极参与CSDN社区,程序员们可以不断深化对线性代数和其他计算机科学领域知识的理解,不断提升自己的技术水平。总之,程序员在职业生涯中需要掌握线性代数等数学基础知识,以便在计算机编程和开发过程中运用到相关概念和技术。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

-北天-

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值