Color a tree(贪心)

题目

原题链接


问题描述

一颗树有 n n n个节点,这些节点被标号为 ; 1 , 2 , 3 … n ;1,2,3…n ;1,2,3n,每个节点 i i i 都有一个权值 A [ i ] A[i] A[i]
现在要把这棵树的节点全部染色,染色的规则是:
根节点 R R R 可以随时被染色;
对于其他节点,在被染色之前它的父亲节点必须已经染上了色。
每次染色的代价为 T × A [ i ] T×A[i] T×A[i],其中 T T T 代表当前是第几次染色。

求把这棵树染色的最小总代价


分析

需要注意的是:根节点的序号为 R R R,而不一定为1。

一个容易犯错的贪心策略就是从可以染色的点中选择权值最大的点,但不一定能满足最优的染色策略。
例如:

在这里插入图片描述
如果依照这个策略将得到 [ 12435 ] [12435] [12435]的染色顺序,总代价为 35 35 35,但最优染色策略为 [ 13524 ] [13524] [13524],所得总代价为 33 33 33

但再一种情况下,我们可以直接确定下一步的染色对象:也就是树中除根节点外权值最大的节点,在它的父节点被染色后,我们下一次就一定会对这个点进行染色。 因为不存在其他的更优的染色策略。

但如何将这一规律应用到题目中呢?

假设节点 X X X正是满足我们要求的节点,它的权值正是所有未被染色的点中最大的, X X X的父节点为 Y Y Y
我们对 X , Y X,Y X,Y的染色操作是连续的,所以我们可以将两步进行合并。

若此时存在一个节点 Z Z Z Z Z Z X X X都满足染色的要求:
1.先染 Z Z Z a n s 1 = Z + 2 ∗ X + 3 ∗ Y ans_1=Z+2*X+3*Y ans1=Z+2X+3Y
2.先染 X Y X Y XY a n s 2 = X + 2 ∗ Y + 3 ∗ Z ans_2=X+2*Y+3*Z ans2=X+2Y+3Z
需要比较 a n s 1 , a n s 2 ans_1,ans_2 ans1,ans2的大小关系。
a n s 1 > a n s 2 ans_1>ans_2 ans1>ans2 Z + 2 ∗ X + 3 ∗ Y > X + 2 ∗ Y + 3 ∗ Z Z+2*X+3*Y>X+2*Y+3*Z Z+2X+3Y>X+2Y+3Z,即 X + Y 2 > Z \frac{X+Y}{2}>Z 2X+Y>Z;
a n s 1 ≤ a n s 2 ans_1\leq ans_2 ans1ans2,即 X + Y 2 ≤ Z \frac{X+Y}{2}\leq Z 2X+YZ

此时只需要比较 X + Y 2 跟 Z \frac{X+Y}{2}跟Z 2X+YZ的关系,所以不妨将 X + Y 2 \frac{X+Y}{2} 2X+Y作为合并后 X 、 Y X、Y XY为一点后的等效权值。
将节点 Y Y Y并入节点 X X X后,需要将 Y Y Y的所有子节点同时并入 X X X的子节点才是真正的合并。

等效权值的推广:由于我们当初依照的是贪心的策略,其实也就是局部染色的顺序。
对于合并两个节点之前,两个节点很可能已经被合并过了,它们之前的合并说明之前的染色策略更优,我们引入两个值来描述它们的合并情况:
V a l ( 合 并 所 有 的 点 的 权 值 总 和 ) Val(合并所有的点的权值总和) Val
n u m ( 合 并 的 点 的 个 数 , 初 始 化 值 为 1 ) num(合并的点的个数,初始化值为1) num1
V a l n u m \frac{Val}{num} numVal表示该点的等效权值。

我们合并满足上述要求的 X 、 Y X、Y XY时: a n s + = X . V a l ∗ Y . n u m ans+=X.Val*Y.num ans+=X.ValY.num。(Y为父)
表示在对 X X X染色之后,需要先经过 Y . n u m Y.num Y.num次染色才会对 X X X进行染色,我们可以先对结果加上这一部分的值。

合并后:
Y . V a l + = X . V a l Y.Val+=X.Val Y.Val+=X.Val
Y . n u m + = X . n u m Y.num+=X.num Y.num+=X.num
Y Y Y的等效权值为 Y . V a l Y . n u m \frac{Y.Val}{Y.num} Y.numY.Val
经过 n − 1 n-1 n1次合并,我们将会得到一个合并了所有点的点,此时我们已经计算了合并过程中的染色代价,但还需要 a n s + = ∑ i = 1 n a [ i ] ans+=\sum_{i=1}^na[i] ans+=i=1na[i]才是我们最后的答案,因为全部的染色过程不只是有合并过程的染色代价,在合并之前,我们需要对父节点进行染色,这一步之前没有被计算。

关于这个权值最大的点的选择可以暴力遍历,也可以维护一个优先队列,但优先队列不能在我们修改权值后自动及时更新,所以采用暴力会更方便一些。

代码

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
#define fir(i, a, b) for (int i = (a); i <= (b); i++)
#define rif(i, a, b) for (int i = (a); i >= (b); i--)
const ll N=1e3+5;
ll n,r,ans;
struct node{
	ll fa,num;
	double val;
	vector<ll>son;
};
node a[N];
ll find(){
	int ans;
	double maxn=0;
	fir(i,1,n){
		if(i!=r&&(a[i].val/a[i].num)>maxn){
			maxn=a[i].val/a[i].num;
			ans=i;
		}
	}
	return ans;
}
int main(){
	while(cin>>n>>r){
		if(!n&&!r)return 0;
		ans=0;
		fir(i,1,n){
			cin>>a[i].val;
			a[i].num=1;
			ans+=a[i].val;
			a[i].fa=0;
		}
		fir(i,1,n-1){
			ll x,y;
			cin>>x>>y;
			a[y].fa=x;
			a[x].son.push_back(y);
		}
		fir(i,1,n-1){
			ll tmp=find(); 
			ll Fa=a[tmp].fa;
			ans+=a[tmp].val*a[Fa].num;
			for(auto x:a[tmp].son){
				a[x].fa=Fa;
				a[Fa].son.push_back(x);
			}
			a[Fa].num+=a[tmp].num;
			a[Fa].val+=a[tmp].val;
			a[tmp].val=0;
		}
		cout<<ans<<endl;
	}
}
/*
5 1
1 2 1 2 4
1 2
1 3
2 4
3 5
0 0

33
*/
  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值