CF785D(div2)Lost Arithmetic Progression(思维)

题目

原题链接


问题描述

我们以 [ b , q , y ] [b,q,y] [b,q,y]表示以 b b b为首元素, q q q为公差, y y y为序列个数的序列,如 [ − 1 , 2 , 4 ] [-1,2,4] [1,2,4]表示序列 [ − 1 , 1 , 3 , 5 ] [-1,1,3,5] [1,1,3,5]
若存在两个序列 A A A B B B,它们的交集为序列 C C C,在我们已知序列 B B B C C C的前提下,问 A A A有多少种可能:
若不存在,则输出 0 0 0
若存在无限个,则输出 − 1 -1 1
否则,输出具体数目,答案可能过大,对答案模上 1 0 9 + 7 10^9+7 109+7


分析

1.不存在

C C C中存在 B B B中不存在的元素时,说明序列 C C C不合法。
判断 C C C是否包含于 B B B中,先看范围,再看首部对应,最后看公差关系。
目标是保证 C C C中每一项在 B B B中均有对应。

bool surplus(){//看范围,再看首尾,再看公差关系 
	if(c<b)return true;
	if(c+r*(z-1)>b+q*(y-1))return true;
	if((c-b)%q!=0||(c-b+r*(z-1))%q!=0||r%q!=0)return true;
	return false;
}

2.无限个

序列 A A A有无限种可能,也就是其个数的增加不会影响 C C C的值,也就是这些值不会位于 B B B中。
b > c − r b>c-r b>cr,形如 c − r ∗ i ( 1 < i ) c-r*i(1<i) cri(1<i)的元素可以被包含于 A A A中,且对结果没有影响,所以序列 A A A个数不受限制,序列可能为无限种;
b + q ∗ ( y − 1 ) < c + r ∗ z b+q*(y-1)<c+r*z b+q(y1)<c+rz,同理。

if(b>c-r||b+q*(y-1)<c+r*z){//a立足于c,a中可以含有无限个b中不含的元素,左拓或右拓, 
		cout<<"-1"<<endl;
		return;
	}

3.有限个

我们以 [ a , p , x ] [a,p,x] [a,p,x]来表示序列 A A A,此时必定满足 l c m ( p , q ) = r lcm(p,q)=r lcm(p,q)=r,根据式子 r = p ∗ q g c d ( p , q ) r=\frac{p*q}{gcd(p,q)} r=gcd(p,q)pq可以看出 p p p一定是 r r r的因子,此时通过 O ( r ) O(\sqrt{r}) O(r )的时间可以枚举出 r r r所有的因子,再以辗转相除法确定是否满足 r = p ∗ q g c d ( p , q ) r=\frac{p*q}{gcd(p,q)} r=gcd(p,q)pq
若我们得到一个 p p p满足式子,接下来的问题就是在 A A A于此下有多少个满足要求的解?

为了保证 C C C的合法性,我们所得的 a a a x x x也应当有所约束:
1. a > c − r & & a + p ∗ ( x − 1 ) < c + r ∗ z a>c-r\&\&a+p*(x-1)<c+r*z a>cr&&a+p(x1)<c+rz
我们已知此时 B B B C C C满足 :    b ≤ c − r & & c + r ∗ z ≤ b + q ∗ ( y − 1 ) :\ \ b\leq c-r\&\& c+r*z\leq b+q*(y-1) :  bcr&&c+rzb+q(y1),若 A A A不满足要求, C C C将不合法。
2. ( c − a ) % p = = 0 (c-a)\%p==0 (ca)%p==0
首部对应,保证 C C C中每一项在 A A A中均有对应。

由条件1可知, a a a可以选择的位置为 [ c − r + 1 , c − r + 2.... , c − 1 , c ] [c-r+1,c-r+2....,c-1,c] [cr+1,cr+2....,c1,c],共计 r r r个位置,又因条件2,所以共有 r p \frac{r}{p} pr个合法位置;
同理右端 a + p ∗ ( x − 1 ) a+p*(x-1) a+p(x1)也有 r p \frac{r}{p} pr个位置可以选择,共计有 ( r p ) 2 (\frac{r}{p})^2 (pr)2种方案。

总和就是 ∑ l c m ( p , q ) = r ( r p ) 2 \sum_{lcm(p,q)=r}(\frac{r}{p})^2 lcm(p,q)=r(pr)2

代码

#include <bits/stdc++.h>
typedef long long ll;
using namespace std;
#define fir(i, a, b) for (ll i = (a); i <= (b); i++)
#define rif(i, a, b) for (ll i = (a); i >= (b); i--)
const int N=3e5;
const ll mod=1e9+7;
ll b,q,y,c,r,z,cnt,tmp;
ll gcd(ll x,ll y){
	return y?gcd(y,x%y):x;
}
ll lcm(ll x,ll y){
	return x*y/gcd(x,y);
}
bool surplus(){//看范围,再看首尾,再看公差关系 
	if(c<b)return true;
	if(c+r*(z-1)>b+q*(y-1))return true;
	if((c-b)%q!=0||r%q!=0)return true;
	return false;
}
inline void solve(){
	cin>>b>>q>>y>>c>>r>>z;
	if(surplus()){
		cout<<0<<endl;
		return;
	}
	if(b>c-r||b+q*(y-1)<c+r*z){//a立足于c,a中可以含有无限个b中不含的元素,左拓或右拓, 
		cout<<"-1"<<endl;
		return;
	}
	cnt=0;//此时特点为C首尾元素不为b首尾元素,枚举a可能公差值x,满足x*q/gcd(x,q)=r--> x为r因子, 
	for(ll i=1;i*i<=r;i++){
		if(r%i==0){//同时讨论两个因子,i与r/i,注意避免重复讨论 
			if(lcm(i,q)==r){
				(cnt+=(r/i)*(r/i))%=mod;
			}
			tmp=r/i;
			if(lcm(tmp,q)==r&&tmp!=i){
				(cnt+=(r/tmp)*(r/tmp))%=mod;
			}
		}
	}
	cout<<cnt<<endl;
}
int main(){
	ll _;
	cin>>_;
//	_=1;
	while(_--){
		solve();
	}
    return 0;
}
  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值