素数打表+最小质因子(埃氏筛,欧拉筛)

问题:枚举n以内所有素数

素数打表的共有缺点都是只能满足1e8以下的数字,因为数组最大只能开1e8级别,数字太大还是得朴素求素数法用sqrt()优化

埃氏筛

前言:埃氏筛, 全名埃拉托斯特尼筛法,是一种古老且简单的用来找出一定范围内所有的质数的算法,公元前250年由希腊数学家埃拉托斯特尼提出。 这种算法的主要思想是:一个素数的整数倍一定是合数

时间复杂度:O(n * log (log n) )

代码模板:

/*时间复杂度:O(n*logn)
*/
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<queue>
#include<cmath>
#include<string>
using namespace std;
typedef long long int ll;

const int MAX_N = 1e7+10;
int cnt = 0;//记录素数个数
int prime[MAX_N];//保存素数
bool isPrime[MAX_N];//记录是否为素数

//埃氏筛
inline void Ehrlich(int n)
{
    memset(isPrime,true,sizeof(isPrime));//令所有数都为素数
    memset(prime,0,sizeof(prime));

    isPrime[0] = isPrime[1] = false;//0和1不是素数
    for(int i = 2;i<=n;i++){
        if(isPrime[i]){
            //如果i是素数。记录进prime数组
            prime[cnt++] = i;
            for(int j = i*i;j<=n;j+=i){
                //将该素数的倍数全置为不是素数
                //i*i开始是优化,因为i倍之前的一定都被筛过了
                isPrime[j] = false;
            }
        }
    }
}

int main()
{
    int n;//枚举n以内所有素数
    cin>>n;
    Ehrlich(n);
    //检测前20个素数
    for(int i = 0;i<cnt;i++){
        cout<<prime[i]<<" ";
    }
    cout<<endl;
    return 0;
}

欧拉筛(线性筛)+最小质因子 

前言:埃氏筛的不足之处在于有的素数的倍数被重复筛了许多次,例如12,被2筛了一次后又被3筛了一次,欧拉筛对埃氏筛进行了改进,保证每个数都只被筛一次。

基本思路:在埃氏筛法的基础上,让每个合数只被它的最小质因子筛选一次,以达到不重复的目的。(将合数分解为一个最小质数乘以另一个数的形式,即 合数 = 最小质数 * 自然数,然后通过最小质数来判断当前数是否被标记过。)

时间复杂度:O(n)

代码模板:

/*
时间复杂度:O(N)
*/
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<queue>
#include<cmath>
#include<string>
using namespace std;
typedef long long int ll;

const int MAX_N = 1e7 + 5;
int prime[MAX_N];//存放素数
int composite[MAX_N];//记录合数的最小质因子
bool isPrime[MAX_N];//判断是否是素数
int cnt = 0;//记录素数个数

void ola(int n)
{
    memset(isPrime,true,sizeof(isPrime));//全置为是素数
    memset(prime,0,sizeof(prime));
    
    isPrime[0] = isPrime[1] = false;//0,1不是素数
    composite[0] = composite[1] = -1;//0.1没有质因数
    for(int i = 2;i <= n;i++){
        //这里的i用于判断是否是素数
        if(isPrime[i]){
            prime[cnt++] = i;
            composite[i] = i;//质数的最小质因子就是自己
        }
            
        for(int j = 0;j<cnt && i*prime[j] <= n; j++){
            //prime[j]为合数其中一个因子
            //这里i的含义是合数的另一个因子
            isPrime[prime[j]*i] = false;
            composite[prime[j]*i] = prime[j];
            if(i%prime[j] == 0)
                break;//线性筛精髓
        }
    }

}

int main()
{
    int n;
    cin>>n;
    ola(n);
    
    //检查
    cout<<"n前所有的质数:"<<endl;
    for(int i = 0;i<cnt;i++)
    {
        cout<<prime[i]<<" ";
    }
    cout<<endl;
    cout<<"1-n所有的最小质因数:"<<endl;
    for(int i = 2;i<=n;i++){
        cout<<i<<":"<<composite[i]<<" ";
    }
    cout<<endl;
    return 0;
}

关于 if(i%prime[j] == 0)break; :

改进埃氏筛,即用最小质因子来标记筛掉某个数,如果i是prime[j]的整数倍,那么prime[j+1]就不是prime[j+1]*i的最小质因数。

证明:假设 i = k*prime[j],k为正整数,下一步筛 i * prime[j+1],带入i,则为k* prime[j] * prime[j+1],即证prime[j+1]不是i * prime[j+1]的最小质因子。


题目链接:CodeForces - 1366D  最小质因子+拓展GCD

题解报告:[Code Forces-1366D] Two Divisors题解​​​​​​​

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Twilight Sparkle.

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值