高等数学基本概念之映射

映射

定义

X X X Y Y Y非空集合,有一个法则 ƒ ƒ ƒ,使得 X X X每一个元素 x x x,在 Y Y Y 下都有唯一 y y y 与之对应。记作: ƒ : X → Y ƒ:X\rightarrow Y ƒ:XY

称:

  1. y y y x x x(在映射 f f f 下)的,记作 f ( x ) f(x) f(x)
  2. x x x y y y(在映射 f f f 下)的原像
  3. X X X 为映射 f f f定义域,记作 D f D_f Df
  4. X X X 中所有元素的像组成的集合为值域,记作 R f R_f Rf f ( X ) f(X) f(X)

由定义可知:

  1. D f = X D_f=X Df=X
    每个 x x x 都有 y y y 与之对应
  2. f ( X ) = R f ⊆ Y f(X)=R_f\subseteq Y f(X)=RfY,而非 R f = Y R_f=Y Rf=Y
    y y y 不一定有 x x x 与之对应
  3. ∀ x ∈ X \forall x\in X xX 对应的像唯一
    每个 x x x 只能对应一个 y y y
  4. 可能有一个 y y y 对应多个 x x x
  5. y = f ( x ) y=f(x) y=f(x)

如图是一个简单的映射:
在这里插入图片描述

此映射为一个简单的分类映射

三要素

  1. 定义域 D f D_f Df
  2. 值域 R f R_f Rf
  3. 对应法则 f f f

分类

满射

R f = Y R_f=Y Rf=Y,即每个 y y y 都有 x x x 与之对应

如图:
在这里插入图片描述

单射

∀ x 1 ≠ x 2 ∈ X \forall x_1\neq x_2\in X x1=x2X 都有 f ( x 1 ) ≠ f ( X 2 ) f(x_1)\neq f(X_2) f(x1)=f(X2),即每个 y y y 只有一个 x x x 与之对应

如图:
在这里插入图片描述

双射(又称一一映射)

即是单射又是满射

如图为姓名和学号的映射:
在这里插入图片描述

逆映射

定义

  1. 定义1

    映射 f : X → Y f:X\rightarrow Y f:XY 为单射
    f − 1 : R f → X f^{-1}:R_f\rightarrow X f1:RfX 为其逆映射

    按上述定义,只有单射才存在逆映射

  2. 定义2

    映射 f : X → Y f:X\rightarrow Y f:XY 为双射
    f − 1 : Y → X f^{-1}:Y\rightarrow X f1:YX 为其逆映射

    按上述定义,只有双射才存在逆映射

f : 姓名 → 学号 f:姓名\rightarrow 学号 f:姓名学号 映射中,可知 f ( 王五 ) = 00005 f(王五)=00005 f(王五)=00005
其逆映射 f − 1 : 学号 → 姓名 f^{-1}:学号\rightarrow 姓名 f1:学号姓名 如下图:
在这里插入图片描述
可得 f − 1 ( 00005 ) = 王五 f^{-1}(00005)=王五 f1(00005)=王五

复合映射

定义

有两个映射:

  1. g : X → Y 1 g:X\rightarrow Y_1 g:XY1
  2. f : Y 2 → Z f:Y_2\rightarrow Z f:Y2Z

满足 Y 1 ⊆ Y 2 Y_1\subseteq Y_2 Y1Y2,可推出 R g ⊆ D f R_g\subseteq D_f RgDf

R g ⊆ Y 1 ⊆ Y 2 = D f R_g\subseteq Y_1\subseteq Y_2=D_f RgY1Y2=Df

则由映射 f f f g g g 可确定一个从 X X X Z Z Z 的映射,此映射成为映射 f f f g g g 构成的复合映射,记作 f ∘ g f\circ g fg
f ∘ g : X → Z f\circ g:X\rightarrow Z fg:XZ f ∘ g ( x ) = f [ g ( x ) ] , x ∈ X f\circ g(x)=f[g(x)],x\in X fg(x)=f[g(x)],xX

注意: f ∘ g ≠ g ∘ f f\circ g\neq g\circ f fg=gf,因为 g g g f f f 复合是有顺序的

如图:

  1. 映射 g : X → Y 1 g:X\rightarrow Y_1 g:XY1 代表 x ∈ X x\in X xX 的父亲是 y 1 = g ( x ) y_1=g(x) y1=g(x)
    在这里插入图片描述

  2. 映射 f : Y 2 → Z f:Y_2\rightarrow Z f:Y2Z 代表 y 2 ∈ Y 2 y_2\in Y_2 y2Y2 的母亲是 z = f ( y 2 ) z=f(y_2) z=f(y2)
    在这里插入图片描述

  3. 复合映射 f ∘ g : X → Z f\circ g:X\rightarrow Z fg:XZ 代表 x ∈ X x\in X xX 的祖母是 z = f ∘ g ( x ) z=f\circ g(x) z=fg(x)
    在这里插入图片描述

参考

[1] 高等数学同济大学出版社第七版

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值