1.从最简单的神经网路开始
在学习机器学习的过程中,大家对神经网络应该都有一个基本概念:神经网络就像一个函数拟合器,它可以拟合任意函数。
def NeuralNetwork(inputs, weight): # 定义神经网络
prediction = inputs * weight # 将数据与权重相乘
return prediction
inputs = 2 # 输入数据,可随意更换
weight = -1 # 权重
pred = NeuralNetwork(inputs, weight) # 前向传播,即获得预测结果
print(pred)
刚刚我们完成的就是前向传播的过程,也就是一个预测的过程 。
预测其实就是神经网络对输入数据进行“思考”后得到的结果。
2.神经网络工作原理概述
上面的那个神经网络将输入乘以权重,将输入数据“缩放”一定的比例。
神经网络的交互:
1.接受输入的变量,并以此作为信息来源;
2.拥有权重变量,并以此作为知识;
3.融合信息和知识,输出预测结果
目前为止所有的神经网络都是这样工作的,他使用权重中的知识解释输入数据的信息。
另一种理解神经网络权重的方法是将权重作为网络的输入和预测之间敏感度的度量:如果权重非常高,即使是最小的输入也可以对预测结果产生非常大的影响;如果权重很小,那就算是很大的输入也只能对预测结果产生很小的扰动。
3.使用多个输入进行预测
在实际场景中,如果能给神经网络提供的信息越多&#