建立运输次数最小化模型、策略优化模型、敏感性分析模型和整体方案设计模型
经过不懈的努力,我们已经完成了2024国际高校数学建模竞赛A题的40+页完整论文和代码,文章较长建议先看目录,相关完整内容可见文末
摘要
本研究针对2024国际高校数学建模竞赛A题金字塔石块运输优化问题展开了全面的分析和建模。我们从基本的运输次数最小化问题出发,逐步引入多目标优化、敏感性分析和动态协同优化,构建了一系列日益复杂和贴近实际的数学模型。通过运用多种先进的优化算法和分析方法,我们不仅获得了具体的优化方案,还深入探讨了各种因素对运输效率的影响。研究结果为实际运输决策提供了有力的理论支撑和实践指导。
问题1聚焦于最基本的运输次数最小化。我们建立了一个多维资源优化配置模型,考虑了石块数量、重量和体积等约束条件。模型的目标函数为最小化运输次数,同时满足总运输量和车辆容量限制。我们使用自适应迭代优化算法求解此问题,该算法结合了贪心策略和动态规划的思想。算法首先生成一个贪心初始解,然后通过动态规划不断优化,直到找到最优解。这个模型的创新点在于将多维约束整合到一个统一的优化框架中,并设计了高效的求解算法。
问题2扩展了问题1,引入了不同距离石块的优先级和多目标优化。我们提出了一个多目标优化动态规划模型,目标函数包括最小化运输次数、最大化加权装载量和平滑运输距离。我们使用基于MATLAB全局优化工具箱的自适应多目标遗传算法求解此问题。算法通过引入惩罚函数处理等式约束,使用自适应交叉和变异操作提高搜索效率。求解结果表明,在平衡多个目标的情况下,模型能够有效地优先运输远距离石块,