2024国际高校数学建模竞赛A题金字塔石块运输

建立运输次数最小化模型、策略优化模型、敏感性分析模型和整体方案设计模型

经过不懈的努力,我们已经完成了2024国际高校数学建模竞赛A题的40+页完整论文和代码,文章较长建议先看目录,相关完整内容可见文末

摘要

本研究针对2024国际高校数学建模竞赛A题金字塔石块运输优化问题展开了全面的分析和建模。我们从基本的运输次数最小化问题出发,逐步引入多目标优化、敏感性分析和动态协同优化,构建了一系列日益复杂和贴近实际的数学模型。通过运用多种先进的优化算法和分析方法,我们不仅获得了具体的优化方案,还深入探讨了各种因素对运输效率的影响。研究结果为实际运输决策提供了有力的理论支撑和实践指导。

问题1聚焦于最基本的运输次数最小化。我们建立了一个多维资源优化配置模型,考虑了石块数量、重量和体积等约束条件。模型的目标函数为最小化运输次数,同时满足总运输量和车辆容量限制。我们使用自适应迭代优化算法求解此问题,该算法结合了贪心策略和动态规划的思想。算法首先生成一个贪心初始解,然后通过动态规划不断优化,直到找到最优解。这个模型的创新点在于将多维约束整合到一个统一的优化框架中,并设计了高效的求解算法。

问题2扩展了问题1,引入了不同距离石块的优先级和多目标优化。我们提出了一个多目标优化动态规划模型,目标函数包括最小化运输次数、最大化加权装载量和平滑运输距离。我们使用基于MATLAB全局优化工具箱的自适应多目标遗传算法求解此问题。算法通过引入惩罚函数处理等式约束,使用自适应交叉和变异操作提高搜索效率。求解结果表明,在平衡多个目标的情况下,模型能够有效地优先运输远距离石块,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

微信公众号:数模0error

你的鼓励是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值