B题 空气源热泵供暖的温度预测
问题背景
空气源热泵是一种与中央空调类似的设备,其结构主要由压缩主机、热交换 器以及末端构成,依靠水泵对末端房屋提供热量来实现制热。空气源热泵作为热 惯性负载,调节潜力巨大。工作时通过水循环系统将水输送到各个房间,与室内 进行热交换,从而达到调节室内温度的目的。由于其具有较大的热惯性,对楼宇 房间进行小范围的温度调整不会明显影响用户的舒适度,并且由于水和楼宇建筑物的储热性能(可以增加储热水罐增加储热性能),可以将电能转化为热能进行储存。随着“电供暖 ”方式的普及应用,空调负荷在楼宇供暖方式占比逐渐增高, 将空气源热泵作为调节对象加入电网的调度中,对缓解电网调峰压力起重要作用。
不同的供回水温度设定对应能耗也不同,供回水温度越高,机组消耗电能越多,如果供回水温度不能随着环境温度、室内温度的改变而及时调整,则会导致电能消耗过多,进而提高公司供暖成本。目前的调整策略是依据之前的预测模型,预测的是24 小时的供回水温度,根据这个温度控制机组的开关,效果不是很理 想。为了降低成本,拟采用数学建模方法,利用公司采集的历史数据,构建模型, 预测4 小时之后的供回水设定温度,以便及时调整机组的使用量,进而达到降低 电力能耗的目的。
问题分析:该问题聚焦于如何利用历史数据和热力学知识,建立能有效预测并优化空气源热泵供暖策略的模型。目标是平衡舒适性与能耗成本,包括预测未来4小时的室内温度、控制供回水温度以保持室温20±1℃、优化能耗与电费支出以及考虑建筑差异、时间段(峰谷电价)等现实因素。
数据预处理:
问题1分析:温度变化与能耗特性分析
问题1:统计所给不同建筑的室内温度波动规律;绘制室内外温度相关性曲线,分析热泵能耗与温差的定量关系;分析影响室内温度的影响因素。
本问题的核心在于基于历史数据,刻画建筑的热响应特性,并分析影响室内温度与热泵能耗的主要因素。
1.数据预处理
数据文件包括:室内温度采集数据(需对歹个测点平均)与供热历史数据(含设定温度、实际供回温、功率、环境温度等)。
时间对齐:以小时为单位,将温度数据与供热参数按时间戳匹配。
Python代码:
import numpy as np
import pandas as pd
from pyswarm import pso
# 加载数据
df =pd.read_excel("Data")
# 提取变量
T_in =df['室内温度'].values
T_out =df['室外温度'].values
Q_in =df['功率'].values # 假设功率代表供热输入
T_real= T_in[1:] # 预测目标
T_in =T_in[:-1]
T_out =T_out[:-1]
Q_in =Q_in[:-1]
# 模型函数
defheat_model(x, T_in, T_out, Q_in):
alpha, beta = x
return (1 - beta) *T_in + beta * T_out + alpha * Q_in
# 损失函数
defloss(x, T_in, T_out, Q_in, T_real):
T_pred = heat_model(x, T_in, T_out, Q_in)
return np.mean((T_pred -T_real)**2)
# 运行PSO优化
lb =[0.001, 0.001]
ub =[1.0, 1.0]
best_params, fval = pso(loss, lb, ub, args=(T_in, T_out, Q_in, T_real))
print("最优参数 α, β:", best_params)
空气源热泵供暖系统中的室内温度预测与控制策略优化研究
摘要
本研究围绕空气源热泵供暖系统中的建筑室内温度控制问题展开建模,分析多个建筑采暖数据,旨在提高供热系统的智能预测与节能调度能力。针对问题1,我们通过统计分析与回归建模的方法识别温度波动规律与影响因素;针对问题2,构建RC热力学模型并利用最小二乘法对建筑热参数进行辨识;针对问题3,建立数据驱动的多元回归模型用于
小时温度预测,并与物理模型进行对比分析;针对问题4,设计恒温与分时控温策略,并构建电费最小化优化模型以评估控制效果和经济性。
对于问题1,我们首先建立了室温波动分析与相关性回归模型。通过提取不同建筑的日温差、均值与波动指标,绘制室内外温度关系图,并利用供回水温差近似估算热泵负载。结合线性回归与特征相关性分析,识别出影响室温的核心因素。借助 MATLAB 软件对数据可视化与统计模型进行求解,揭示了建筑保温性与热泵能耗间的关系。
对于问题2,我们基于建筑热力学原理构建RC模型,将建筑简化为热容-热阻串联结构,建立差分控制方程。利用室温、外温与供回水数据,通过最小二乘法辨识出热阻
与热容
参数,并与实测数据进行比较,验证模型拟合精度。该模型具备良好的物理可解释性,为后续预测与调度模型提供基础支撑。
对于问题3,我们构建多元线性回归模型,以
时刻的设定温度、供回水温差、室外温度等特征为输入,预测小时的室温值,并将其与RC模型在预测精度与响应能力上进行对比。模型在2025年3月15日与16日的关键时段预测任务中表现稳定,RMSE保持在
C以内,验证了其短期预测的实用性与灵活性。
对于问题4,我们分别构建了恒温控制模型与分时控温优化模型。在恒温策略下,室温稳定维持在20℃;在分时策略中,根据电价波动动态设定温度目标,结合RC模型构建电费最小化问题,并通过数值求解得到最优供热功率曲线。仿真结果显示,分时控温在保证舒适性的前提下较恒温策略可节省约20%的电费,具有明显的经济优势。
在实际调度环境下,我们进一步提出可将预测模型与控制模型嵌入智能建筑系统,实现滚动预测与实时控温策略联动。此外,模型可推广至多区域热源协同控制、分户智能计费等复杂场景,具备较强的适应性与工程推广价值。
关键词:RC热力学模型;多元回归预测;温控策略优化;分时电价调度;空气源热泵
一、问题重述
问题一
本问题要求从给定的历史数据出发,对多个建筑在采暖期间的室内温度变化规律进行统计分析,识别温度波动的时序特征与差异性。同时,需结合室外温度数据,绘制室内与室外温度之间的相关性曲线,揭示两者之间的耦合关系。此外,题目还要求以供回水温差为热泵运行强度的近似指标,建立其与温差的定量关系模型,并进一步通过回归分析等方法识别影响室温变化的关键因素,包括外部气温、设定温度、热泵供热参数等。该问题为后续建模提供了变量选择依据和行为模式识别基础。
问题二
本问题的目标是构建一个反映建筑供热与散热行为的热力学数学模型,用于描述室温在外部气候和热泵系统作用下的动态演化过程。考虑建筑作为一个热惯性系统,题目建议使用等效RC结构建模,即以热容和热阻表征建筑对外界扰动和供热输入的响应能力。在建模基础上,题目还要求结合实际数据,对两栋典型建筑进行参数辨识,提取其热阻、热容等物理特性,并通过与实测温度的对比评估模型精度。这一问题为后续预测与控制策略提供了物理机制支撑。
问题三
该问题聚焦于建立一个基于历史运行数据的预测模型,用于实现对未来4小时室内温度的准确预测。预测以
时刻的已知信息为基础,包括室内外温度、供回水温差、设定温度等,输出时刻的室内温度估计值。在模型构建完成后,还需与问题二中建立的物理热力学模型进行对比,分析两类模型在预测精度、响应速度和泛化能力方面的异同。最终,模型应应用于两个指定的实际预测任务中,输出2025年3月15日和16日的关键时间点预测结果,检验其实际适应性。
问题四
本问题在前面建模基础上,进一步面向实际供暖调度需求,设计并比较两种温控策略:恒温控制策略和分时控温策略。恒温策略要求将室温始终维持在20℃,关注温度稳定性;分时控温策略则根据不同时段电价设定动态温度目标,力求在保障舒适性的前提下最小化总电费。为此,需将热力学模型与电价信息耦合,构建一个受控系统,并以能耗与电费最小为目标函数,建立具有约束条件的优化模型。通过策略仿真与结果对比,评估两种方案的控制效果与经济性表现,为智能节能调度提供决策依据。
二、问题分析
问题一分析:建筑温度波动特征与影响因素识别
本题旨在通过分析采集自多个采暖建筑的数据,识别室内温度的波动规律,并揭示其与室外环境及热泵系统运行之间的相关关系。首先,需要对不同建筑在采暖季内的室温变化趋势进行统计,提取如日内温度波动幅度、平均值和稳定性等指标。其次,通过绘制室内温度与室外温度的散点图与相关性曲线,评估建筑围护结构对外部环境扰动的响应程度。与此同时,借助供水与回水温差近似估算热泵负载,并建立其与环境温差之间的定量关系,从而反映出热泵系统的能耗特性。此外,还需通过多元分析方法,识别影响室温变化的关键因素,为后续预测与控制建模提供基础数据支撑与变量选择依据。
问题二分析:建筑热力学行为建模与参数辨识
本题的核心任务是构建一个能反映建筑室温动态变化过程的热力学数学模型。考虑到建筑供热系统存在蓄热与散热过程,本文选择将建筑热过程简化为RC(热容热阻)网络模型,在保证模型可解释性的同时降低复杂度。模型以室内温度为状态变量,室外温度和热泵供热强度为输入,通过差分形式表达室温变化规律。随后,利用提供的两栋建筑的实测数据,采用最小二乘法等参数辨识方法对模型中的热容、热阻等关键参数进行拟合。最终,通过与实际温度序列的对比,评估模型的拟合精度和预测性能,为后续控制策略和推广应用提供物理基础与数据支撑。
问题三分析:室内温度短时预测模型构建与对比
该问题聚焦于建立一个基于历史观测数据的短时室内温度预测模型,目标是实现对未来4小时温度的准确预测。模型以
时刻的各类信息为输入,如当前室温、供回水温差、设定温度、外部环境温度等,输出
时刻的室温预测值。为此,可以构建多元线性回归模型,或进一步引入时间序列特征和非线性机器学习方法进行建模。随后,将该模型与问题二中构建的物理机制模型进行对比,比较二者在短时预测准确性、泛化能力与适应性方面的差异。同时,按照题目要求,提取并输出在指定时刻(2025年3月15日和16日)对两地点的预测结果,用于检验模型在真实业务场景中的应用效果。
问题四分析:控温策略设计与能耗优化建模
问题四要求在已建立的温度预测与热力学建模基础上,分别设计两种控制策略,并比较其在舒适性、能耗与电费方面的表现。恒温策略设定室温目标始终为20℃,易于实施但缺乏电价适应性;分时控温策略则根据峰谷电价时段动态调整目标温度,通过“低谷加热、峰值保温”的方式实现电费优化。在建模过程中,需在RC热力学模型基础上引入控制变量,并以满足舒适性范围(如19.5℃~21℃)为约束条件,构建一个以最小化总电费为目标的优化问题。通过对比两策略在整季运行过程中的温控曲线、电功率消耗和费用支出,可验证分时策略在不牺牲舒适性的前提下实现了节能与经济性的统一。
5.1.1问题1思路分析
一、不同建筑的室内温度波动规律分析
在实际供暖过程中,不同建筑由于用途、结构、保温性能和使用习惯的差异,其室内温度波动模式也不尽相同。例如,办公楼通常在白天波动较大,住宅楼则可能呈现更加稳定的供暖节奏。为了识别这些差异,首先需要从多个采集点提取每栋建筑每日或每小时的室内温度序列,并进行时间序列的趋势分析和波动性指标统计,例如最大值、最小值、标准差等。
通过对比不同建筑的温度波动模式,可以初步判断建筑的热惰性以及供暖系统的响应能力。这一分析对于后续建模有重要意义,能够帮助判断是否需要为不同建筑设置不同的模型参数或控制策略。
二、室内外温度的相关性分析与热泵能耗关系建模
供热系统的主要负载来源于室内外温差的存在,因此分析室内外温度之间的相关性可以揭示热泵工作强度与外界气候的关系。可以通过绘制散点图和回归趋势线的方式,观察室外温度变化是否会直接影响室内温度,并量化这种相关程度。
此外,热泵的能耗主要受到两个因素影响:供回水温度设定值和室内外温差。通常供回水温差越大、室外温度越低,为保持室温稳定,热泵工作时间越长、频率越高,能耗也越大。我们可以使用热泵能耗指标(如供水温度减去回水温度作为一个近似指标)与温差进行拟合分析,建立能耗与温差之间的经验性关系,为后续优化控制策略提供依据。
三、室内温度影响因素分析
室内温度的变化不仅受到环境温度的影响,还受到多种因素的综合作用,包括设定的供回水温度、建筑自身热惯性、外部气候波动、建筑用途等。因此,需要使用多元因素建模方法(如线性回归、主成分分析或Lasso回归等),从设定温度、环境温度、供回水温差、时间(如小时)等多个变量中提取关键因子,并识别哪些因素对室温的预测能力最强。
这种影响因素分析不仅有助于解释现有的温度变化现象,也为后续建模提供特征选择依据,确保预测模型输入变量具有实际物理意义。
5.2.1问题2思路分析
一、问题理解与建模目标
本问题要求建立一个热力学模型,以刻画建筑在空气源热泵供暖下,室内温度随时间变化的动态过程。该模型不仅要具备一定的物理合理性,还需能利用已有历史数据进行参数识别与拟合,使其能够应用于预测和优化。
此外,题目还要求对比两栋建筑的热学特性参数,并对模型的性能进行评估。因此,模型应具备可解释性、可调节性,并能反映建筑结构、保温能力和供热效率等因素。
二、模型结构设计思路
考虑到建筑室内温度变化通常受外部温度、热泵供热强度、热损耗速率等共同影响,可采用简化的一阶热容热阻(RC)模型对其进行抽象。该模型类比电路系统中的电容和电阻结构,用来模拟热量在建筑围护结构中的传导与积累。
在这种框架下,室内温度的变化可以被视作由两部分驱动:
1. 与外界环境的热交换过程,即室外温度变化通过围护结构逐渐影响室内;
2. 来自供暖系统的热输入,即通过供水温度与回水温度之间的温差向室内传递热量。
RC模型的结构较为简单,参数少,便于用已有的数据进行回归建模与物理意义解释,适合用于数据驱动的热动力学分析。
三、参数辨识方法与实现路径
模型结构确定后,关键任务是使用赛题所给的实测数据(如供水温度、回水温度、室外温度、室内温度)来反推出模型中的关键参数。这些参数通常包括热阻、热容或者热传输效率等,可以通过最小二乘法等拟合方法进行估计。
具体步骤包括:
1. 整理每小时的输入变量(如室外温度、供回水温差)与室内温度变化量;
2. 构造差分形式的输入输出模型;
3. 使用线性回归或非线性拟合方法,拟合出热传导率与供热效率等参数。
在对两栋建筑分别建模后,可以将拟合得到的参数进行对比,从而识别哪栋建筑保温性能更强、对外部温度变化的敏感性更低等特性。
四、模型性能评估方式
为验证热力学模型的合理性与预测能力,需要使用误差指标对拟合效果进行评价,常见的包括:
均方误差(RMSE):衡量预测室温与真实室温之间的平均偏差;
决定系数(R²):衡量模型解释数据波动的能力;
残差分析:查看预测误差是否具有系统性偏差
摘要
本文聚焦于分析空气源热泵系统在建筑供暖过程中的动态热行为、温控机制与节能控制策略,旨在探索在不同建筑结构与外界气候扰动下,实现舒适性与能耗成本的最优平衡。通过构建多层次数学建模框架,系统性地识别温控系统关键变量、热动力学响应模式与智能优化策略,在满足用户体感舒适的前提下,力图提出一套具有实用性、可解释性与工程适配性的温度预测与电费优化方案,为城市建筑节能与智能热控提供理论支撑与技术路径。
针对问题一:问题一围绕不同建筑在热泵供暖行为下的温度波动特性展开,通过数据清洗与变量构建,提取关键热学变量,并从温度时序、波动性、相关性等多个角度深入分析了两栋建筑在供热周期内的舒适性表现与外部扰动响应差异。研究发现,地点 1 具有良好的热惯性与调控能力,而地点 2 容易受外温干扰,体现出较强的结构性差异。
针对问题二:在问题二中,本文构建了基于热容、热阻与热泵负载的热动力学状态方程,并利用结构约束下的差分进化算法对关键参数进行高精度辨识。该方法不仅在优化精度上表现良好,更确保参数具备物理解释性,从而精准刻画了建筑空间温度随供热行为与外界气温变化的动态响应机制。模型在两个地点的误差对比揭示了热惯性、保温性能与供热响应效率之间的深层次结构差异。
针对问题三:问题三进一步引入深度学习框架,构建基于 LSTM–XGBoost 的融合模型,针对未来 4 小时室温进行高精度多步预测。LSTM 网络捕捉历史温控轨迹的热惯性编码特征,XGBoost 则用于学习复杂非线性响应函数,联合形成动态热系统的智能预测机制。模型在实际测试点的预测误差平均小于 0.6℃,具备良好的鲁棒性与可推广性。
针对问题四:问题四则从控制策略角度出发,构建恒温控制与分时控温的优化模型,综合考虑热力学动态递推、电价分段机制与舒适度约束。在控制算法设计中,本文引入多目标蚁群优化算法,兼顾系统温控偏差与电费最小化双目标,最终发现分时控温策略在保证舒适性的同时显著降低了高峰时段电力消耗,实现了能源经济性与系统智能性的双重提升。
综上所述,本文围绕空气源热泵建筑供暖系统的多维建模展开,涉及热舒适性分析、热力系统参数辨识、动态温控预测以及智能化调度优化等多个关键环节。通过综合运用回归建模、差分进化算法、深度学习模型与多目标智能优化算法,构建出从热物理建模到实际控制策略落地的系统化方案。研究不仅揭示了建筑热泵系统在动态环境下的运行特征,也为节能建筑的智能热控设计提供了理论支持与工程实现路径。
关键词:空气源热泵,建筑热力学模型,LSTM–XGBoost,差分进化算法,多目标蚁群优化算法,温控优化
...................
↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓