【LeetCode】重建二叉树&&数值的整数次方&&二叉搜索树的后序遍历序列

这篇博客探讨了如何根据前序和中序遍历构建二叉树,介绍了递归方法。此外,还讲解了实现幂函数的算法,以及如何判断一个数组是否为二叉搜索树的后序遍历序列。内容涵盖了数据结构和算法的基础知识,包括递归和二叉树特性。
摘要由CSDN通过智能技术生成

54. 重建二叉树

题目:

输入某二叉树的前序遍历和中序遍历的结果,请构建该二叉树并返回其根节点。假设输入的前序遍历和中序遍历的结果中都不含重复的数字。

题解:
  • 将中序遍历的数字和下标存入map,使得查找的效率为O(1);

recur 函数

  • 递归结束的条件:左边界left大于右边界right;
  • 函数的参数
  • root 前序遍历中 根节点的下标;
  • left 中序遍历中 该子树的左边界;
  • right 中序遍历中 该子树的右边界;
  • 在中序遍历数组中以dic.get(preorder[root])为中心进行划分。
class Solution {
    int[] preorder;
    HashMap<Integer, Integer> dic = new HashMap<>();
    public TreeNode buildTree(int[] preorder, int[] inorder) {
        this.preorder = preorder;
        for (int i = 0; i < inorder.length; i++)
            dic.put(inorder[i], i);
        return recur(0, 0, inorder.length - 1);
    }
    TreeNode recur(int root, int left, int right) {
        if (left > right) return null;
        TreeNode node = new TreeNode(preorder[root]);
        int i = dic.get(preorder[root]);
        node.left = recur(root + 1, left, i - 1);
        node.right = recur(root + i - left + 1, i + 1, right);
        return node;
    }
}

55.数值的整数次方

题目:

实现 pow(x, n) ,即计算 x 的 n 次幂函数(即,xn)。不得使用库函数,同时不需要考虑大数问题。

题解:
  • 如果n为负数,则将其转换为x的倒数求幂;
  • 思路是将3^5 转换为 9^2×3 再转换为 81^1 ×3 再转换为 (812)0 ×81×3 ;
  • 当指数为0时结束循环,当指数为奇数时令res = res × x,否则继续转换就会造成x的丢失。
 public double myPow(double x, int n) {
        if(x == 0) return 0;
        long b = n;
        double res = 1.0;
        if(b < 0) {
            x = 1 / x;
            b = -b;
        }
        while(b > 0) {
            if((b & 1) == 1) res *= x;
            x *= x;
            b >>= 1;
        }
        return res;
    }

56.二叉搜索树的后序遍历序列

题目:

输入一个整数数组,判断该数组是不是某二叉搜索树的后序遍历结果。如果是则返回 true,否则返回 false。假设输入的数组的任意两个数字都互不相同。

题解:

recur 函数

  • 参数说明
    • postorder后序遍历的数组;
    • i 和 j 是当前子树的左右边界;
  • 递归结束的条件
    • i >= j 说明子树长度为1 ,返回true,递归结束;
  • 未达到结束条件;
    • 在左边界向右遍历,找到第一个大于根节点的下标记作m;
    • 继续向后遍历,假如最后一个大于根节点的下标为index,将index + 1记作p;
    • 假如是二叉搜索树的话,p应该指向右边界,并递归调用recur函数判断左右子树。
 public boolean verifyPostorder(int[] postorder) {
        return recur(postorder, 0, postorder.length - 1);
    }
    boolean recur(int[] postorder, int i, int j) {
        if(i >= j) return true;
        int p = i;
        while(postorder[p] < postorder[j]) p++;
        int m = p;
        while(postorder[p] > postorder[j]) p++;
        return p == j && recur(postorder, i, m - 1) && recur(postorder, m, j - 1);
    }

有点累了 ~ 还是要继续冲!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值