深度学习RNN

RNN是基本的序列处理模型,主要应用于自然语言处理。与传统神经网络不同的是,它考虑了之前输入的信息,依赖于神经网络在上一周期所产生的输出。

RNN可以看做是若干个由输入层,记忆单元h,输出层的连接,在每一组的连接上都有一个参数W用于传输上一周期的输出结果。

随着序列的不断推进,前面的隐层将会影响后面的隐层;损失函数也会随着序列的推进而不断积累。

除上述特点之外,标准RNN的还有以下特点:
1、权值共享,图中的W全是相同的,U和V也一样。
2、每一个输入值都只与它本身的那条路线建立权连接,不会和别的神经元连接。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值