RNN是基本的序列处理模型,主要应用于自然语言处理。与传统神经网络不同的是,它考虑了之前输入的信息,依赖于神经网络在上一周期所产生的输出。
RNN可以看做是若干个由输入层,记忆单元h,输出层的连接,在每一组的连接上都有一个参数W用于传输上一周期的输出结果。
随着序列的不断推进,前面的隐层将会影响后面的隐层;损失函数也会随着序列的推进而不断积累。
除上述特点之外,标准RNN的还有以下特点:
1、权值共享,图中的W全是相同的,U和V也一样。
2、每一个输入值都只与它本身的那条路线建立权连接,不会和别的神经元连接。