目录
摘要
Video Transformer Network 是基于Transformer架构改进的视频理解模型,旨在解决传统3D卷积神经网络在长距离依赖建模和计算效率方面的不足。通过引入自注意力机制,VTN能够有效捕捉视频序列中的全局时空依赖关系,同时显著提升计算效率。该模型采用视频特征提取、时空位置编码、Transformer编码器和任务特定头的框架,在视频分类、动作识别等任务上取得了SOTA的性能,成为视频理解领域的重要进展。
Abstract
The Video Transformer Network is an improved video understanding model based on the Transformer architecture, designed to address the limitations of traditional 3D convolutional neural networks in modeling long-range dependencies and computational efficiency. By incorporating the self-attention mechanism, VTN effectively captures global spatiotemporal dependencies in video sequences while significantly enhancing computational efficiency. The model employs a framework consisting of video feature extraction, spatiotemporal positional encoding, Transformer encoders, and task-specific heads, achieving state-of-the-art performance in tasks such as video classification and action recognition, marking a significant advancement in the field of video understanding.
VTN
论文链接:[2102.00719] Video Transformer Network
项目地址:SlowFast/projects/vtn/README.md at master · bomri/SlowFast · GitHub
背景
传统视频理解模型依赖于卷积操作来提取时空特征,但存在以下问题:
- 长距离依赖建模困难:3D卷积核的局部感受野限制了模型捕捉视频中远距离时空关系的能力;
- 计算效率低:3D卷积操作计算复杂度高,难以处理长视频序列;
- 缺乏全局上下文信息:卷积操作难以建模视频中全局的时空依赖关系。
VTN通过引入Transformer架构,利用其自注意力机制解决了上述问题,能够高效地建模视频中的全局时空依赖关系。
模型框架

视频特征提取
视频特征提取是VTN的第一步,目的是将原始视频数据转换为适合Transformer处理的特征表示。
(1) 输入预处理
输入视频被分割为多个片段。例如,一段视频可以被均匀采样为 T 个片段,每个片段包含若干帧(frame),每个片段被送入预训练的CNN中提取视觉特征。
假设有一个视频数据集,每个视频被分割为 16 帧,每帧是 224x224 的 RGB 图像,使用批大小为 4 进行训练。
- 输入形状:(batch_size, seq_len, C, H, W) = (4, 16, 3, 224, 224)。
(2) 特征提取
2D CNN:如果使用2D CNN,模型会逐帧提取空间特征,然后将这些特征在时间维度上堆叠,形成时空特征。
3D CNN:如果使用3D CNN,模型直接提取时空特征,同时捕捉空间和时间信息。
提取的特征通常是一个三维张量,形状为 T×H×W×C ,其中:
- T 是时间维度,即片段或帧的数量
- H×W 是空间维度,即特征图的高度和宽度
- C 是通道数,即特

最低0.47元/天 解锁文章
1642

被折叠的 条评论
为什么被折叠?



