Video Transformer Network

目录

摘要

Abstract

VTN

背景

模型框架

视频特征提取

时空位置编码

Transformer编码器

任务特定头

关键创新

实验

代码

总结


摘要

Video Transformer Network 是基于Transformer架构改进的视频理解模型,旨在解决传统3D卷积神经网络在长距离依赖建模和计算效率方面的不足。通过引入自注意力机制,VTN能够有效捕捉视频序列中的全局时空依赖关系,同时显著提升计算效率。该模型采用视频特征提取、时空位置编码、Transformer编码器和任务特定头的框架,在视频分类、动作识别等任务上取得了SOTA的性能,成为视频理解领域的重要进展。

Abstract

The Video Transformer Network is an improved video understanding model based on the Transformer architecture, designed to address the limitations of traditional 3D convolutional neural networks in modeling long-range dependencies and computational efficiency. By incorporating the self-attention mechanism, VTN effectively captures global spatiotemporal dependencies in video sequences while significantly enhancing computational efficiency. The model employs a framework consisting of video feature extraction, spatiotemporal positional encoding, Transformer encoders, and task-specific heads, achieving state-of-the-art performance in tasks such as video classification and action recognition, marking a significant advancement in the field of video understanding.

VTN

论文链接:[2102.00719] Video Transformer Network

项目地址:SlowFast/projects/vtn/README.md at master · bomri/SlowFast · GitHub

背景

传统视频理解模型依赖于卷积操作来提取时空特征,但存在以下问题:

  • 长距离依赖建模困难:3D卷积核的局部感受野限制了模型捕捉视频中远距离时空关系的能力;
  • 计算效率低:3D卷积操作计算复杂度高,难以处理长视频序列;
  • 缺乏全局上下文信息:卷积操作难以建模视频中全局的时空依赖关系。

VTN通过引入Transformer架构,利用其自注意力机制解决了上述问题,能够高效地建模视频中的全局时空依赖关系。

模型框架

视频特征提取

视频特征提取是VTN的第一步,目的是将原始视频数据转换为适合Transformer处理的特征表示。

(1) 输入预处理

输入视频被分割为多个片段。例如,一段视频可以被均匀采样为 T 个片段,每个片段包含若干帧(frame),每个片段被送入预训练的CNN中提取视觉特征。

假设有一个视频数据集,每个视频被分割为 16 帧,每帧是 224x224 的 RGB 图像,使用批大小为 4 进行训练。

  • 输入形状:(batch_size, seq_len, C, H, W) = (4, 16, 3, 224, 224)。

(2) 特征提取

2D CNN:如果使用2D CNN,模型会逐帧提取空间特征,然后将这些特征在时间维度上堆叠,形成时空特征。

3D CNN:如果使用3D CNN,模型直接提取时空特征,同时捕捉空间和时间信息。

提取的特征通常是一个三维张量,形状为 T×H×W×C ,其中:

  • T 是时间维度,即片段或帧的数量
  • H×W 是空间维度,即特征图的高度和宽度
  • C 是通道数,即特
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值