信号与系统-2-卷积的运算性质

卷积代数

卷积代数的运算性质与代数运算类似

  • 交换律:两函数在卷积积分中的次序可交换 f 1 ( t ) ∗ f 2 ( t ) = f 2 ( t ) ∗ f 1 ( t ) f_1(t)*f_2(t)=f_2(t)*f_1(t) f1(t)f2(t)=f2(t)f1(t)
  • 分配律:并联系统的冲激响应等于组成并联系统的各子系统冲激响应之和 f 1 ( t ) ∗ [ f 2 ( t ) + f 3 ( t ) ] = f 1 ( t ) ∗ f 2 ( t ) + f 1 ( t ) ∗ f 3 ( t ) f_1(t)*[f_2(t)+f_3(t)]=f_1(t)*f_2(t)+f_1(t)*f_3(t) f1(t)[f2(t)+f3(t)]=f1(t)f2(t)+f1(t)f3(t)
  • 结合律:串联系统的冲激响应等于组成串联系统的各子系统冲激响应的卷积 [ f 1 ( t ) ∗ f 2 ( t ) ] ∗ f 3 ( t ) = f 1 ( t ) ∗ [ f 2 ( t ) ∗ f 3 ( t ) ] [f_1(t)*f_2(t)]*f_3(t)=f_1(t)*[f_2(t)*f_3(t)] [f1(t)f2(t)]f3(t)=f1(t)[f2(t)f3(t)]

卷积的微积分

卷积的微积分与代数运算大不相同

  • 两个函数卷积后的导数等于其中一个函数的导数与另一函数的卷积 d d t [ f 1 ( t ) ∗ f 2 ( t ) ] = f 1 ( t ) ∗ d f 2 ( t ) d t = d f 1 ( t ) d t ∗ f 2 ( t ) \begin{aligned}\dfrac{d}{dt}[f_1(t)*f_2(t)]&=f_1(t)*\dfrac{df_2(t)}{dt}\\&=\dfrac{df_1(t)}{dt}*f_2(t)\end{aligned} dtd[f1(t)f2(t)]=f1(t)dtdf2(t)=dtdf1(t)f2(t)
  • 两函数卷积后的积分等于其中一个函数之积分与另一函数之卷积 ∫ − ∞ t [ f 1 ( λ ) ∗ f 2 ( λ ) ] d λ = f 1 ( t ) ∗ ∫ − ∞ t f 2 ( λ ) d λ = f 2 ( t ) ∗ ∫ − ∞ t f 1 ( λ ) d λ \begin{aligned} \int_{-\infty}^t[f_1(\lambda)*f_2(\lambda)]d\lambda &=f_1(t)*\int_{-\infty}^tf_2(\lambda)d\lambda \\&=f_2(t)*\int_{-\infty}^tf_1(\lambda)d\lambda\end{aligned} t[f1(λ)f2(λ)]dλ=f1(t)tf2(λ)dλ=f2(t)tf1(λ)dλ

与冲激函数或阶跃函数的卷积

  • 函数 f ( t ) f(t) f(t)与单位冲激函数 δ ( t ) \delta(t) δ(t)卷积的结果仍然是函数 f ( t ) f(t) f(t)本身 f ( t ) ∗ δ ( t ) = f ( t ) f(t)*\delta(t)=f(t) f(t)δ(t)=f(t) p r o o f : proof: proof: f ( t ) ∗ δ ( t ) = ∫ − ∞ + ∞ δ ( τ ) ⋅ f ( t − τ ) d τ = f ( t ) f(t)*\delta(t)=\int_{-\infty}^{+\infty}\delta(\tau)\cdot f(t-\tau)d\tau=f(t) f(t)δ(t)=+δ(τ)f(tτ)dτ=f(t)

  • 函数 f ( t ) f(t) f(t)与延迟的单位冲激函数 δ ( t − t 0 ) \delta(t-t_0) δ(tt0)卷积的结果,相当于把函数 f ( t ) f(t) f(t)延时 t 0 t_0 t0 f ( t ) ∗ δ ( t − t 0 ) = f ( t 0 ) f(t)*\delta(t-t_0)=f(t_0) f(t)δ(tt0)=f(t0)

其他结论

  • f ( t ) ∗ δ ′ ( t ) = f ′ ( t ) f(t)*\delta'(t)=f'(t) f(t)δ(t)=f(t)
    p r o o f : proof: proof: f ( t ) ∗ δ ′ ( t ) = ∫ − ∞ + ∞ δ ′ ( t ) f ( t − τ ) d τ = ∫ − ∞ + ∞ f ( t − τ ) d δ ( τ ) = 0 − ∫ − ∞ + ∞ δ ( τ ) d [ f ( t − τ ) ] = ∫ − ∞ + ∞ δ ( τ ) f ′ ( t − τ ) d τ = f ′ ( t ) \begin{aligned}f(t)*\delta'(t)&=\int _{-\infty}^{+\infty}\delta'(t)f(t-\tau)d\tau\\&=\int_{-\infty}^{+\infty}f(t-\tau)d\delta(\tau) \\&=0-\int_{-\infty}^{+\infty}\delta(\tau)d[f(t-\tau)] \\&=\int_{-\infty}^{+\infty}\delta(\tau)f'(t-\tau)d\tau \\&=f'(t) \end{aligned} f(t)δ(t)=+δ(t)f(tτ)dτ=+f(tτ)dδ(τ)=0+δ(τ)d[f(tτ)]=+δ(τ)f(tτ)dτ=f(t)
  • f ( t ) ∗ u ( t ) = ∫ − ∞ t f ( τ ) d τ f(t)*u(t)=\int_{-\infty}^tf(\tau)d\tau f(t)u(t)=tf(τ)dτ
    p r o o f : proof: proof: f ( t ) ∗ u ( t ) = ∫ − ∞ + ∞ f ( τ ) ⋅ u ( t − τ ) d τ = ∫ − ∞ t f ( τ ) d τ \begin{aligned}f(t)*u(t)&=\int_{-\infty}^{+\infty}f(\tau)\cdot u(t-\tau)d\tau \\&=\int_{-\infty}^tf(\tau)d\tau \end{aligned} f(t)u(t)=+f(τ)u(tτ)dτ=tf(τ)dτ
  • 1
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值