信号与系统-1-δ函数尺度运算的证明

本文探讨了广义函数的一个关键性质,即如果两个函数与同一个测试函数的卷积相等,则这两个函数也相等。接着,通过一个尺度运算δ(at)的证明,展示了δ(at)如何与原始δ函数相关,并且利用广义函数的性质得出δ(at)=1/aδ(t)。这个结论对于理解泛函分析中的分布理论至关重要。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  • 事先给出一则广义函数的性质:若 ∫ − ∞ + ∞ g 1 ( t ) φ ( t ) = ∫ − ∞ + ∞ g 2 ( t ) φ ( t ) \int_{-\infty}^{+\infty}g_1(t)\varphi(t)=\int_{-\infty}^{+\infty}g_2(t)\varphi(t) +g1(t)φ(t)=+g2(t)φ(t),则有 g 1 ( t ) = g 2 ( t ) g_1(t)=g_2(t) g1(t)=g2(t)成立

  • 尺度运算 δ ( a t ) = 1 ∣ a ∣ δ ( t ) \delta(at)=\dfrac{1}{|a|}\delta(t) δ(at)=a1δ(t) 的证明:
    已知 ∫ − ∞ + ∞ f ( t ) δ ( t ) d t = f ( 0 ) \int_{-\infty}^{+\infty}f(t)\delta(t)dt=f(0) +f(t)δ(t)dt=f(0)
    ∫ − ∞ + ∞ f ( t ) δ ( a t ) d t = 1 a ∫ − ∞ + ∞ f ( t ) δ ( a t ) d ( a t ) = 1 a f ( 0 ) ∫ − ∞ + ∞ δ ( a t ) d ( a t ) = 1 a f ( 0 ) \begin{aligned} \int_{-\infty}^{+\infty}f(t)\delta(at)dt &= \dfrac{1}{a}\int_{-\infty}^{+\infty}f(t)\delta(at)d(at) \\ &=\dfrac{1}{a}f(0)\int_{-\infty}^{+\infty}\delta(at)d(at) \\ &=\dfrac{1}{a}f(0) \end{aligned} +f(t)δ(at)dt=a1+f(t)δ(at)d(at)=a1f(0)+δ(at)d(at)=a1f(0)
    因此有 ∫ − ∞ + ∞ f ( t ) δ ( a t ) d t = 1 a ∫ − ∞ + ∞ f ( t ) δ ( t ) d t \int_{-\infty}^{+\infty}f(t)\delta(at)dt=\dfrac{1}{a}\int_{-\infty}^{+\infty}f(t)\delta(t)dt +f(t)δ(at)dt=a1+f(t)δ(t)dt
    由广义函数的性质可得: δ ( a t ) = 1 a δ ( t ) \delta(at)=\dfrac{1}{a}\delta(t) δ(at)=a1δ(t)

  • 对于绝对值的问题,暂时还未解决

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值