拉普拉斯方程在球、柱坐标系下的解
球坐标系下的拉普拉斯方程解
- 球坐标系下的拉普拉斯方程形式
1 r 2 ∂ ∂ r ( r 2 ∂ u ∂ r ) + 1 r 2 s i n θ ∂ ∂ θ ( s i n θ ∂ u ∂ θ ) + 1 r 2 s i n 2 θ ∂ 2 u ∂ φ 2 = 0 \dfrac{1}{r^2}\dfrac{\partial}{\partial r}(r^2\dfrac{\partial u}{\partial r})+\dfrac{1}{r^2sinθ}\dfrac{\partial}{\partial θ}(sin\theta\dfrac{\partial u}{\partial \theta})+\dfrac{1}{r^2sin^2\theta}\dfrac{\partial^2u}{\partial φ^2}=0 r21∂r∂(r2∂r∂u)+r2sinθ1∂θ∂(sinθ∂θ∂u)+r2sin2θ1∂φ2∂2u=0 - 分离线量
r
r
r,角量
θ
、
φ
\theta、\varphi
θ、φ
令 u ( r , θ , φ ) = R ( r ) Y ( θ , φ ) u(r,\theta,\varphi)=R(r)Y(\theta,\varphi) u(r,θ,φ)=R(r)Y(θ,φ),代入方程后分离变量
得到 1 R d d r ( r 2 d R d r ) = − 1 Y s i n θ ∂ ∂ θ ( s i n θ ∂ Y ∂ θ ) − 1 Y 1 s i n 2 θ ∂ 2 Y ∂ φ 2 \dfrac{1}{R}\dfrac{d}{dr}(r^2\dfrac{dR}{dr})=\dfrac{-1}{Ysin\theta}\dfrac{\partial }{\partial \theta}(sin\theta \dfrac{\partial Y}{\partial \theta})-\dfrac{1}{Y}\dfrac{1}{sin^2\theta}\dfrac{\partial^2Y}{\partial \varphi^2} R1drd(r2drdR)=Ysinθ−1∂θ∂(sinθ∂θ∂Y)−Y1sin2θ1∂φ2∂2Y
由于线量、角量各自独立,因此上式的值只能为常数,令此常数为 l ( l + 1 ) l(l+1) l(l+1)
于是得到两个常微分方程
其中,关于 r r r的方程易解得 R ( r ) = C r l + D r − ( l + 1 ) R(r)=Cr^l+Dr^{-(l+1)} R(r)=Crl+Dr−(l+1)
关于角量的方程 1 s i n θ ∂ ∂ θ ( s i n θ ∂ Y ∂ θ ) + 1 s i n 2 θ ∂ 2 Y ∂ φ 2 + Y l ( l + 1 ) = 0 \dfrac{1}{sin\theta}\dfrac{\partial }{\partial \theta}(sin\theta \dfrac{\partial Y}{\partial \theta})+\dfrac{1}{sin^2\theta}\dfrac{\partial^2Y}{\partial \varphi^2}+Yl(l+1)=0 sinθ1∂θ∂(sinθ∂θ∂Y)+sin2θ1∂φ2∂2Y+Yl(l+1)=0此式称为球函数方程 - 分离球函数方程
取 Y ( θ , φ ) = Θ ( θ ) Φ ( φ ) Y(\theta,\varphi)=\varTheta(\theta)\Phi(\varphi) Y(θ,φ)=Θ(θ)Φ(φ),代入球函数方程可得 s i n θ Θ d d θ ( s i n θ d Θ d θ ) + l ( l + 1 ) s i n 2 θ = − 1 Φ d 2 Φ d φ 2 \dfrac{sin\theta}{\varTheta}\dfrac{d}{d\theta}(sin\theta\dfrac{d\varTheta}{d\theta})+l(l+1)sin^2\theta=-\dfrac{1}{\Phi}\dfrac{d^2\Phi}{d\varphi^2} Θsinθdθd(sinθdθdΘ)+l(l+1)sin2θ=−Φ1dφ2d2Φ同样的,由于θ与φ独立,所以等式的值只能为常数,令此常数为 λ \lambda λ
于是得到分别关于 φ , θ \varphi,\theta φ,θ的两个方程
其中φ的构成"本征值问题" λ = m 2 \lambda=m^2 λ=m2 Φ ( φ ) = A c o s m φ + B s i n m φ \Phi(\varphi)=Acosm\varphi+Bsinm\varphi Φ(φ)=Acosmφ+Bsinmφ - 对θ的方程进行变化
令 x = c o s θ x=cos\theta x=cosθ,于是得到勒让德方程
d d x [ ( 1 − x 2 ) d Θ d θ ] + [ l ( l + 1 ) − m 2 1 − x 2 ] Θ = 0 \dfrac{d}{dx}[(1-x^2)\dfrac{d\varTheta}{d\theta}]+[l(l+1)-\dfrac{m^2}{1-x^2}]\varTheta=0 dxd[(1−x2)dθdΘ]+[l(l+1)−1−x2m2]Θ=0
柱坐标系下的拉普拉斯方程解
- 柱坐标系下的拉普拉斯方程形式
ρ ∂ ∂ ρ ( ρ ∂ u ∂ ρ ) + 1 ρ 2 ∂ 2 u ∂ φ 2 + ∂ 2 u ∂ z 2 = 0 \rho\dfrac{\partial}{\partial \rho}(\rho\dfrac{\partial u}{\partial \rho})+\dfrac{1}{\rho^2}\dfrac{\partial ^2u}{\partial φ^2}+\dfrac{\partial^2u}{\partial z^2}=0 ρ∂ρ∂(ρ∂ρ∂u)+ρ21∂φ2∂2u+∂z2∂2u=0