一.先看自己的电脑NVIDIA 支持CUDA版本是多少?
1.打开NVIDIA控制面板
2.点击帮助---系统信息--组件
我的支持CUDA11.6
二.再看支持Pytorch的CUDA版本
三.打开CUDA官网
下载CUDA 11.6
下载好后,安装
选择 自定义 然后安装位置 (先去F盘 建个CUDA-manger文件夹 然后在里面建个CUDA11.6文件夹 再在里面建立CUDA1 CUDA2这两个文件夹
前两个位置选到CUDA1
第三个选择CUDA2
然后下一步
最后验证 在anaconda promt里输入nvcc -V 可以看到CUDA的版本
四.然后去下载Cudnn,去官网
没有账号的需要注册一个,然后登陆,下载CUDA11.6对应的Cudnn,下载好之后,解压在F盘
五,安装Pytorch
找到对应的版本
看到CUDA 11.6 ,pytorch版本1.13.1 torchvision=0.14.1 torchaudio=0.13.1
如果 输入
pip install torch==1.13.1+cu116 torchvision==0.14.1+cu116 torchaudio==0.13.1 --extra-index-url https://download.pytorch.org/whl/cu116
需要时间很久,好几个G ,所以我们还可以 去
https://download.pytorch.org/whl/cu116
这个下载 torch torchaudio torchvision
把这三个文件 放在F:\whl里
补充:下载torch 轮子很慢
右键点击,复制下载链接保存。
然后,安装Motrix下载器:https://motrix.app/download,使用Motrix下载
把刚复制的下载链接,输入到下载任务新建对话框里,新建下载任务。(我下载好了,在我的F盘)
注意:这个Motrix下载速度比迅雷快将近10倍
然后在虚拟环境里pip install 这三个(我这里是F:\whl,对应的版本 上面给出 修改一下)
pip install F:\whl\torch-1.13.1+cu116-cp38-cp38-win_amd64.whl
pip install F:\whl\torchvision-0.14.1+cu116-cp38-cp38-win_amd64.whl
pip install F:\whl\torchaudio-0.13.1+cu116-cp38-cp38-win_amd64.whl
安装完之后,conda list 即可看见安装的库
验证:
输入python,进入解释器
输入import torch 返回>>> 说明可以导入 然后再torch.cuda.is_available() 返回True 就说明cuda 可以用
六、Jupyter的配置,修改路径 还有虚拟环境连接jupyter.
Python深度学习:安装Anaconda、PyTorch(GPU版)库与PyCharm_哔哩哔哩_bilibili
这个up主的视频yyds,可以跟着做。
虚拟环境连接jupyter的解决办法:
进入虚拟环境里,
1、pip install ipykernel
2、python -m ipykernel install --user --name gh1 --display-name gh1
gh1为虚拟环境的名称,display-name代表显示的是什么
在虚拟环境中启动jupyter notebook
阿婆主给的方法是:ipython notebook,我这里一直提示找不到notebook。之后我使用jupyter notebook启动成功
扩展:删除虚拟环境并且删除notebook中的虚拟环境
1 查看安装了哪些虚拟环境kernel(在base或虚拟环境下运行都可以):
jupyter kernelspec list
2 删除指定的kernel:
jupyter kernelspec uninstall myenv2(虚拟环境名字)
3 删除虚拟环境conda remove -n EnvName --all
EnvName是指虚拟环境的名字