CUDA cuDNN和pytorch(GPU版)的完整安装教程


* 说明: 本教程使用wsl-ubuntu20.04, 其他发行版linux的命令可能有所区别.
*实测机型: i5-13500HX | RTX 4060 Laptop

一、下载CUDA12.X版本

这里以下载CUDA12.2为例。

  1. 前往cuda-12.2下载页, 按照如图方式选择合适的选项:
    根据你的系统进行选择
  2. 按照官方给出的命令, 在bash中依此执行:
    bash安装命令
​wget https://developer.download.nvidia.com/compute/cuda/repos/wsl-ubuntu/x86_64/cuda-keyring_1.1-1_all.deb
sudo dpkg -i cuda-keyring_1.1-1_all.deb
sudo apt-get update
sudo apt-get -y install cuda
  1. 添加环境变量
    使用vim等打开~/.bashrc,在末尾添加:
export PATH=/usr/local/cuda-12.2/bin:$PATH
export LD_LIBRARY_PATH=/usr/local/cuda-12.2/lib64:$LD_LIBRARY_PATH
  1. 验证安装是否成功
source ~/.bashrc
nvcc -V  # 查看CUDA版本
二、下载cuDNN
  1. 前往cuDNN Archive 下载合适的cudnn版本。由于我们下载的是CUDA12.X版本,这里我们就选择下载8.9.7版本的cudnn.
    选择对应版本的cudnn
    点击后浏览器会接管下载, 可以通过如图方式复制下载链接.
    在这里插入图片描述

  2. 安装cudnn软件包

我们在终端中输入以下命令:

wget -O cudnn.deb <你的下载链接>  # 下载的文件会命名为cudnn.deb
dpkg -i cudnn.deb  # 安装前置软件包
sudo apt update # 更新并获取cudnn的下载源
sudo apt-get install libcudnn8 # 正式安装cudnn软件包
sudo apt-get install libcudnn8-dev # 安装cudnn开发库(可选)

完成上述工作后,可通过下述命令检测是否安装成功:

ls /usr/lib/x86_64-linux-gnu/libcudnn*
ls /usr/include/cudnn.h
dpkg -l | grep -i cudnn
三、安装GPU版的pytorch

Pytorch下载地址
Pytorch包含三个库:torch,torchvision和torchaudio;根据社区的说明,torch-cu118版本能够兼容CUDA12.X,可通过该命令进行安装:

pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118

* 官方更新后通过pip默认下载的就是支持CUDA12.1的pytorch, 命令如下:

pip3 install torch torchvision torchaudio

注: 本教程安装的是cu118版本, 读者可尝试第二种方法进行安装。

四、验证pytorch的CUDA可用性
  1. 先确定pytorch有没有装错,可以在终端输入pip list,查看torch版本,cu后缀就表示支持GPU。
    注意有无cu后缀
  2. 在python中执行torch.cuda.is_available() 返回True说明使用的就是GPU版本。
    在这里插入图片描述
五、体验Pytorch GPU和CPU运算的速度差距
import torch
from time import perf_counter

def cpu_process():
    x = torch.rand(1000,10000)
    y = torch.rand(10000,10000)
    start = perf_counter()
    x.mm(y)
    end = perf_counter()
    print('CPU process time:',end-start)
    
def gpu_process():
    x = torch.rand(1000,10000).cuda()
    y = torch.rand(10000,10000).cuda()
    start = perf_counter()
    x.mm(y)
    end = perf_counter()
    print('GPU process time:',end-start)

if __name__ == '__main__':
    cpu_process()  # CPU process time: 0.5139300849996289
    gpu_process()  # GPU process time: 0.02356865599995217

可以明显看到GPU运算速度相比CPU快了20倍左右 !

### CUDAcuDNN PyTorch本兼容性及安装指南 #### 一、本兼容性概述 CUDAcuDNN PyTorch深度学习开发中的重要工具链组件,它们之间存在严格的本依赖关系。如果这些工具的本不匹配,则可能导致运行时错误或性能下降。 - **CUDA cuDNN 的兼容性** NVIDIA 提供的 cuDNN 库通常会针对特定本的 CUDA 进行优化支持。例如,在引用中提到的 CUDA 11.4 需要搭配支持该本的 cuDNN[^2]。具体来说,cuDNN v8.x 系列广泛适用于 CUDA 11.x 系列。 - **PyTorchCUDA cuDNN 的需求** PyTorch 官方发布的二进制包已经预编译了对某些 CUDA 本的支持。对于 Python 3.12 及其环境下的配置,需确认所使用的 PyTorch 是否显式声明支持当前系统的 CUDA 本[^1]。一般情况下,较新的 PyTorch 本能够适配最新的主流 CUDA 发布。 #### 二、安装步骤说明 以下是基于引用内容推荐的一站式安装流程: 1. **安装 CUDA 工具包** - 下载并安装与目标硬件架构相适应的 CUDA Toolkit (CUDA 11.4)。 - 设置环境变量 `PATH` `LD_LIBRARY_PATH` 来指向 CUDA 的 bin lib 文件夹路径。 2. **部署 cuDNN 加速库** - 获取对应于已安装 CUDA 本的 cuDNN SDK 归档文件。 - 将解压后的头文件动态链接库复制到既定目录下(通常是 `/usr/local/cuda/include` `/usr/local/cuda/lib64`),随后更新共享对象缓存通过命令 `sudo ldconfig` 执行生效操作。 3. **引入 PyTorch 框架** 使用 pip 或 conda 命令来获取官方维护好的轮子形式分发件。比如执行如下脚本来完成指定条件约束下的加载过程: ```bash pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu114 ``` 上述指令明确指定了采用 CUDA 11.4 支持构建而成的 PyTorch 资源集合。 #### 三、验证安装成功与否的方法论 可以通过简单的测试程序判断整个链条是否正常运作起来。下面给出一段用于检测 GPU 访问能力的小例子: ```python import torch if torch.cuda.is_available(): device = 'cuda' else: device = 'cpu' print(f'Using {device} device') x = torch.tensor([1, 2, 3], dtype=torch.float).to(device) y = torch.tensor([4, 5, 6], dtype=torch.float).to(device) z = x * y print(z.cpu().numpy()) ``` 此代码片段创建两个张量并在选定设备上乘法运算之后打印结果出来作为最终反馈依据。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Runfreeone

你的鼓励是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值