- 博客(9)
- 收藏
- 关注
原创 VGG代码详解
卷积层配置:[64, 64, 'M', 128, 128, 'M', 256, 256, 256, 256, 'M', 512, 512, 512, 512, 'M', 512, 512, 512, 512, 'M']卷积层配置:[64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512, 'M', 512, 512, 512, 'M']4)到最后依次池化,得到7*7*512,然后经过三个全连接层,得到1*1*1000的分类结果。
2024-06-15 16:55:40
1230
原创 领域判别器代码详解
此时记录的输出维度为1,输出单元表示某一个类别的概率(通常为正类),并经过sigmoid函数控制输出在0-1之间。self.dis1(x): dis1 是一个线性层(全连接层),其作用是对输入 x 进行线性变换,通常表示为 ( Wx + b ),其中 ( W ) 是权重矩阵,( b ) 是偏置向量。定义第二个线性层 dis2,它将隐藏层的输出映射到一个单一的标量值(输出维度为 1),用于二元分类任务。input_dim指的是输入特征的维度,hidden_dim指的是隐藏层的维度。
2024-06-13 16:36:20
810
原创 梯度反转层代码详解
自定义反转层(ReverseLayerF),通常在域适应或对抗训练中使用。定义了两个静态方法,前向(forward)和后向(backward)方法。
2024-06-13 14:43:49
1252
原创 迁移学习方法总览
此时,联合分布距离由边缘分布距离和条件分布距离构成,联合分布自适应包含了边缘分布自适应和条件分布自适应。统计特征变换是显式最小化源域和目标域的分布差异来进行求解,几何特征变换是隐式最小化二者的分布差异。、边缘分布距离、条件分布距离构成,动态分布自适应包含了边缘分布自适应和条件分布自适应。此时,边缘分布自适应方法用源域和目标域之间的边缘分布距离来近似二者的联合分布距离。此时,条件分布自适应方法用源域和目标域之间的条件分布距离来近似二者的联合分布距离。=1,动态分布自适应退化为条件分布自适应。
2024-06-06 16:26:14
1355
原创 MMD和LMMD
数学中的空间往往需要两部分构成:研究对象和内在规则。常见空间有线性空间、度量空间、赋范空间、内积空间、希尔伯特空间、再生核希尔伯特空间等。线性空间就是定义加法和数乘的空间。线性空间强调的是空间中元素满足线性结构,空间中的一个元素可以由其他元素线性表示出来。度量空间就是定义距离的空间。不同的定义方式,我们可以得到不同的结果。度量空间强调的是两个元素根据某一函数得到的函数值。赋范空间就是定义范数的空间。常见的范数使用为L0范数、L1范数、L2范数和无穷范数。L0范数就是指向量中非零元素的个数。
2024-03-20 16:16:08
2356
1
原创 损失函数合集
交叉熵损失主要是用于判断实际输出与期望输出的接近程度交叉熵损失刻画的是实际输出的概率与期望输出的概率的距离。交叉熵损失越小,两个概率分布就越接近,即实际输出与期望输出越相似。概率分布p是期望输出,概率分布q是实际输出,得到的是两个概率分布之间的距离远近。
2024-03-16 17:27:47
1346
1
原创 无监督领域自适应
无监督领域自适应(Unsupervised Domain Adaptation)是指在目标领域没有标注数据的情况下,将模型从源领域迁移到目标领域的一种方法。
2024-03-13 14:50:31
2177
原创 python代码问题记录
是因为代码中涉及到了CPU和GPU两种设备,导致数据在不同的设备上。出现ValueError: too many values to unpack (expected 4)是因为返回值的数量超过了此时我接收返回值的变量的数量,需要重新修改接收变量的数量。此时计算centroid和count使用的是cpu,而代码中其余数据使用的是gpu,需要修改centroid和count的代码。解决方法:根据提示找到对应的行,判断是哪个元素的数据长度超出了1,将长度超过1的元素进行重新定义,保持数据长度为1。
2024-01-26 00:36:18
5685
1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人