领域判别器代码详解

1、代码

class Discriminator(nn.Module):
    def __init__(self, input_dim=256, hidden_dim=256):
        super(Discriminator, self).__init__()
        self.input_dim = input_dim
        self.hidden_dim = hidden_dim
        self.dis1 = nn.Linear(input_dim, hidden_dim)
        self.bn = nn.BatchNorm1d(hidden_dim)
        self.dis2 = nn.Linear(hidden_dim, 1)


    def forward(self, x):
        x = F.relu(self.dis1(x))
        x = self.dis2(self.bn(x))
        x = torch.sigmoid(x)
        return x

2、概念和代码解读

(1)初始化方法

对应的代码

def __init__(self, input_dim=256, hidden_dim=256):
    super(Discriminator, self).__init__()
    self.input_dim = input_dim
    self.hidden_dim = hidden_dim
    self.dis1 = nn.Linear(input_dim, hidden_dim)
    self.bn = nn.BatchNorm1d(hidden_dim)
    self.dis2 = nn.Linear(hidden_dim, 1)

1)类的初始化方法用于构造函数。它接受了两个参数input_dim和hidden_dim。

input_dim指的是输入特征的维度,hidden_dim指的是隐藏层的维度。

2)super(Discriminator, self).__init__()调用父类 nn.Module 的构造函数,初始化父类中的各个成员变量。这是继承类构造函数的一种标准写法。

3)self.input_dim = input_dim
      self.hidden_dim = hidden_dim

将传入的 input_dim 和 hidden_dim 参数赋值给类的实例变量

self 是一个对象的实例引用,用于在类的方法中访问该实例的属性和方法。

4)self.dis1 = nn.Linear(input_dim, hidden_dim)

定义一个线性层 dis1,它将输入的维度从 input_dim 映射到 hidden_dim

假设输入是图像的像素值或者某种高维特征,通过隐藏层可以将这些输入特征转换为更抽象、更具判别力的特征。例如,从低级的像素值到高级的模式识别特征。

设置隐藏层 dis1 主要是为了增强模型的表现力,使其能够学习和提取更高级的特征。这有助于提高分类任务的准确性和鲁棒性。在神经网络中,隐藏层是从输入到输出进行复杂特征变换和模式识别的关键环节。通过合理的隐藏层设计,模型能够有效地处理和识别复杂的输入模式。

5)self.bn = nn.BatchNorm1d(hidden_dim)
定义一个批标准化层 bn,用于对第一层的输出进行批标准化。批标准化层有助于加快模型训练速度并提高稳定性。

6)self.dis2 = nn.Linear(hidden_dim, 1)

定义第二个线性层 dis2,它将隐藏层的输出映射到一个单一的标量值(输出维度为 1),用于二元分类任务。

此时记录的输出维度为1,输出单元表示某一个类别的概率(通常为正类),并经过sigmoid函数控制输出在0-1之间。如果输出值接近于1,则认为输入为正类;如果输出值接近于0,则认为输入为负类。这种情况下可以使用BCE损失函数来计算损失。

若记录的输出维度为2,则输出单元为一个二维向量,并经过softmax函数映射。第一个元素表示负类的概率,第二个元素表示正类的概率。这种情况下可以使用交叉熵损失函数来计算损失。

输出为1实现简单,直接输出一个概率值,但只能用于二分类任务,需使用sigmoid函数+BCE损失函数。输出为2实现稍微复杂,输出为二维,可以扩散到多分类任务,不仅限于二分类任务,需使用softmax+crossentropyloss来计算损失。

对于二分类任务,两种都可以。如果只考虑二分类任务,输出维度为1更加简单。如果考虑整体一致性(如分类均使用相同的损失函数),可以考虑输出为2。

(2)前向传播方法

对应的代码

def forward(self, x):
    x = F.relu(self.dis1(x))
    x = self.dis2(self.bn(x))
    x = torch.sigmoid(x)
    return x

1)线性变换和ReLU激活

self.dis1(x): dis1 是一个线性层(全连接层),其作用是对输入 x 进行线性变换,通常表示为 ( Wx + b ),其中 ( W ) 是权重矩阵,( b ) 是偏置向量。
F.relu(...): ReLU(Rectified Linear Unit)激活函数,其作用是将所有负值变为0,保留正值不变。ReLU 引入了非线性,使模型能够学习更复杂的模式。

2)批标准化和线性变换

self.bn(x): bn 是批标准化层。批标准化通过标准化每一批数据的输出,使其均值为0,方差为1。这有助于加速训练,并使模型更稳定。
self.dis2(...): dis2 是另一个线性层,将标准化后的特征进一步映射到最终的输出维度。在你的例子中,dis2 的输出维度为1。

3)Sigmoid激活

torch.sigmoid(x): Sigmoid 激活函数将线性层的输出压缩到0到1之间,转化为概率值。这对于判别器来说非常重要,因为我们需要一个概率值来判断输入样本属于哪一类。

  • 29
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
为了实现迁移学习中的域分类损失函数,需要同时训练一个域判别和一个分类。域判别用于判断输入数据来自源域还是目标域,分类则用于对输入数据进行分类。我们可以通过设置不同的损失函数来训练这两个模型。 假设我们的模型输入为 $x$,输出为 $y$,域判别的输出为 $d$。对于分类,我们可以使用交叉熵损失函数: $$L_{cls}=-\sum_{i=1}^N y_i \log(\hat{y_i})$$ 其中 $y_i$ 是真实标签,$\hat{y_i}$ 是模型预测的标签。对于域判别,我们可以使用二元交叉熵损失函数: $$L_{dom}=-\sum_{i=1}^N [d_i \log(\hat{d_i})+(1-d_i)\log(1-\hat{d_i})]$$ 其中 $d_i$ 是真实域标签,$\hat{d_i}$ 是域判别预测的标签。如果 $d_i=1$,表示数据来自源域;如果 $d_i=0$,表示数据来自目标域。我们的目标是让域判别能够正确地判断数据来自源域还是目标域,并让分类能够对两个域的数据都进行准确的分类。 为了实现这一目标,我们需要将两个损失函数结合起来,构建一个综合的损失函数: $$L=L_{cls}-\lambda L_{dom}$$ 其中 $\lambda$ 是一个超参数,用于控制两个损失函数的权重。当 $\lambda$ 较小时,我们更加强调分类的准确性;当 $\lambda$ 较大时,我们更加强调域判别的准确性。 通过这种方式,我们可以同时训练分类和域判别,并且让模型能够正确地判断输入数据来自源域还是目标域。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值